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A B S T R A C T

We have developed a United framework that integrates three self-supervised learning (SSL) ingredients
(discriminative, restorative, and adversarial learning), enabling collaborative learning among the three learning
ingredients and yielding three transferable components: a discriminative encoder, a restorative decoder, and
an adversary encoder. To leverage this collaboration, we redesigned nine prominent self-supervised methods,
including Rotation, Jigsaw, Rubik’s Cube, Deep Clustering, TransVW, MoCo, BYOL, PCRL, and Swin UNETR,
and augmented each with its missing components in a United framework for 3D medical imaging. However,
such a United framework increases model complexity, making 3D pretraining difficult. To overcome this
difficulty, we propose stepwise incremental pretraining, a strategy that unifies the pretraining, in which a
discriminative encoder is first trained via discriminative learning, the pretrained discriminative encoder is then
attached to a restorative decoder, forming a skip-connected encoder–decoder, for further joint discriminative
and restorative learning. Last, the pretrained encoder–decoder is associated with an adversarial encoder for
final full discriminative, restorative, and adversarial learning. Our extensive experiments demonstrate that
the stepwise incremental pretraining stabilizes United models pretraining, resulting in significant performance
gains and annotation cost reduction via transfer learning in six target tasks, ranging from classification to
segmentation, across diseases, organs, datasets, and modalities. This performance improvement is attributed
to the synergy of the three SSL ingredients in our United framework unleashed through stepwise incremental
pretraining. Our codes and pretrained models are available at GitHub.com/JLiangLab/StepwisePretraining.
1. Introduction

Self-supervised learning (SSL) (Jing and Tian, 2020) pretrains
generic source models (Zhou et al., 2021b) without using expert an-
notation, allowing the pretrained generic source models to be quickly
fine-tuned into high-performance application-specific target models
to minimize annotation cost (Tajbakhsh et al., 2021). The existing
SSL methods typically employ one or a combination of the following
three learning ingredients (Haghighi et al., 2022): (1) discriminative
learning, which pretrains an encoder by distinguishing images associ-
ated with (computer-generated) pseudo labels; (2) restorative learning,
which pretrains an encoder–decoder by reconstructing original images
from their distorted versions; and (3) adversarial learning, which pre-
trains an additional adversary encoder to enhance restorative learning.
It has already been demonstrated in Haghighi et al. (2021) that com-
bining self-supervised discriminative methods and restoration enhances
network performance in both classification and segmentation tasks.
Further, (Tao et al., 2020) demonstrated that reconstructive method is
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further enhanced by adversarial learning. Inspired by both (Haghighi
et al., 2021; Tao et al., 2020), we believe that combining all three
components – discriminative, restorative, and adversarial learning –
yields the best performance. Haghighi et al. (2022, 2024) articulated
a vision and insights for integrating three learning ingredients in one
single framework for collaborative learning, yielding three learned
components: a discriminative encoder, a restorative decoder, and an
adversary encoder (Fig. 1). However, such integration inevitably in-
creases model complexity and pretraining difficulty, raising these two
questions: (a) how to optimally pretrain such complex generic models, and
(b) how to effectively utilize pretrained components for target tasks?

To address these two questions, we have redesigned nine promi-
nent SSL methods for 3D imaging, including Rotation (Gidaris et al.,
2018), Jigsaw (Noroozi and Favaro, 2016), Rubik’s Cube (Zhuang
et al., 2019), Deep Clustering (Caron et al., 2018), TransVW (Haghighi
et al., 2021), MoCo (Momentum Contrast) (He et al., 2020), BYOL
(Bootstrap Your Own Latent) (Grill et al., 2020), PCRL (Preservational
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Fig. 1. Our United model consists of three components: a discriminative encoder  , a restorative decoder , and an adversary encoder , where the discriminative encoder
and the restorative decoder are skip connected, forming an encoder–decoder ( ,). To overcome the United model complexity and pretraining difficulty, we develop a strategy,
called D(D+R)(D+R+A), to incrementally train the three components in a stepwise fashion: (1) Step D trains a discriminative encoder ∅, where ∅ indicates that Encoder  is
randomly initialized, via discriminative learning (i.e., D), leading to a pretrained discriminative encoder ; (2) Step D(D+R) attaches the pretrained discriminative encoder  to a
randomly-initialized restorative decoder ∅ for further joint discriminative and restorative learning (i.e., D+R), yielding a pretrained discriminative encoder (+) and a pretrained
restorative decoder (+); (3) Step D(D+R)(D+R+A) associates the pretrained encoder–decoder ((+) ,(+)) with a randomly-initialized adversarial encoder ∅ for final full
discriminative, restorative, and adversarial learning (i.e., D+R+A), resulting in a pretrained discriminative encoder (+)(++), a pretrained restorative decoder (+)(++),
and a pretrained adversarial encoder (++). This stepwise incremental pretraining has proven to be reliable across multiple SSL methods (Fig. 2) for a variety of target tasks
across diseases, organs, datasets, and modalities.
Contrastive Representation Learning) (Zhou et al., 2021a), and Swin
UNETR (Swin UNEt TRansformers) (Tang et al., 2022). Among these
methods, Rotation, Jigsaw, and Rubik’s Cube are classic discriminative
methods. Deep Clustering is a classic clustering method. TransVW and
PCRL are methods that integrate both discriminative and restorative
approaches. MoCo and BYOL are contrastive methods. Swin UNETR
is a transformer-based model that incorporates contrastive, restorative,
and discriminative methods. With these methods, we aim to encompass
all components and models of SSL, emphasizing the generality of our
approach. We formulated each methods in a single framework called
‘‘United’’ (Fig. 2), as it unites discriminative, restorative, and adver-
sarial learning. Pretraining United models, with all three components
together, directly from scratch is unstable (Table 2); therefore, we have
investigated various training strategies and discovered a stable solution:
stepwise incremental pretraining. Such pretraining is accomplished
as follows: first training a discriminative encoder via discriminative
learning, called Step D, then attaching the pretrained discriminative
encoder to a restorative decoder (i.e., forming an encoder–decoder)
for further combined discriminative and restorative learning, called
Step D(D+R), and finally associating the pretrained autoencoder with
an adversarial-encoder for the final full discriminative, restorative,
and adversarial training, called Step D(D+R)(D+R+A). This stepwise
pretraining strategy provides the most reliable performance across most
target tasks evaluated in this work encompassing both classification and
segmentation (see Table 2, 3, 4, 5, and 7).

Through our extensive experiments, we have observed that (1)
discriminative learning alone (i.e., Step D) significantly enhances dis-
criminative encoders on target classification tasks (e.g., +4%, 6%, and
1% AUC (Area Under the ROC Curve) improvement for lung nodule,
pulmonary embolism and pulmonary embolism with vessel-oriented
image representation false positive reduction as shown in Table 3)
relative to training from scratch; (2) in comparison with (sole) discrim-
inative learning, incremental restorative pretraining combined with
continual discriminative learning (i.e., Step D(D+R)) enhances discrim-
inative encoders further for target classification tasks (e.g., +2%, +4%,
and +2% AUC improvement for lung nodule, pulmonary embolism
and pulmonary embolism with vessel-oriented image representation
false positive reduction as shown in Table 3) and boosts encoder–
decoder models for target segmentation tasks (e.g., +3%, +7%, and
2

+5% IoU (Intersection over Union) improvement for lung nodule, liver,
and brain tumor segmentation as shown in Table 5); and (3) compared
with Step D(D+R), the final stepwise incremental pretraining (i.e., Step
D(D+R)(D+R+A)) generates sharper and more realistic medical images
(e.g., FID decreases from 427.6 to 251.3 as shown in Table 6) and
further strengthens each component for representation learning, lead-
ing to considerable performance gains (see Fig. 4) and annotation cost
reduction (e.g., 28%, 43%, and 26% faster for lung nodule false positive
reduction, lung nodule tumor segmentation, and pulmonary embolism
false positive reduction as shown in Fig. 5) for six target tasks across
diseases, organs, datasets, and modalities.

We should note that recently (Haghighi et al., 2022) also combined
discriminative, restorative, and adversarial learning, but our findings
complement theirs, and more importantly, our method significantly
differs from theirs, because they were more concerned with contrastive
learning (e.g., MoCo-v2 (Chen et al., 2020), Barlow Twins (Zbontar
et al., 2021), and SimSiam (Chen and He, 2021)) and focused on 2D
medical image analysis. By contrast, we are focusing on 3D medical
imaging by redesigning nine popular SSL methods beyond contrastive
learning. As they acknowledged (Haghighi et al., 2022), their results
on TransVW (Haghighi et al., 2021) augmented with an adversarial
encoder were based on the experiments presented in this paper. Fur-
thermore, this paper focuses on a stepwise incremental pretraining to
stabilize United model training, revealing new insights into synergistic
effects and contributions among the three learning ingredients.

In summary, we make the following three main contributions:
1. A stepwise incremental pretraining strategy that stabilizes United

models’ pretraining and releases the synergistic effects of the
three SSL ingredients;

2. A collection of pretrained United models that integrate discrim-
inative, restorative, and adversarial learning in a single frame-
work for 3D medical imaging, encompassing both classification
and segmentation tasks, and;

3. A set of extensive experiments that demonstrate how various
pretraining strategies benefit each SSL method for target tasks
across diseases, organs, datasets, and modalities.

2. United framework and stepwise incremental pretraining

We have redesigned nine prominent SSL methods, including Rota-
tion, Jigsaw, Rubik’s Cube, Deep Clustering, TransVW, MoCo, BYOL,
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Fig. 2. Redesigning nine prominent SSL methods: (a) Jigsaw, (b) Rubik’s Cube, (c) Deep Clustering, (d) Rotation, (e) TransVW, (f) MoCo, (g) BYOL, (h) Swin UNETR, and (i)
PCRL in a United framework. The original Jigsaw (Noroozi and Favaro, 2016), Deep Clustering (Caron et al., 2018), Rotation (Gidaris et al., 2018), MoCo (He et al., 2020), and
BYOL (Grill et al., 2020) were proposed for 2D image analysis employing discriminative learning alone and provided only pretrained encoders; therefore, in our United framework
(a, c, d, f, g), these methods have been augmented with two new components (in light blue) for restorative learning and adversarial learning and re-implemented in 3D. The
code for the original Rubik’s Cube (Zhuang et al., 2019) is not released and thus reimplemented and augmented with new learning ingredients in light blue (b). The original
TransVW (Haghighi et al., 2021), Swin UNETR (Hatamizadeh et al., 2021), and PCRL (Zhou et al., 2021a) are supplemented with adversarial learning (c, h, i). Following our
redesign, all nine methods provide all three learned components: discriminative encoders, restorative decoders, and adversary encoders, which are transferable to target classification
and segmentation tasks.
PCRL, and Swin UNTRE; and we augmented each with the missing
components under our United framework (Fig. 2). A United model
(Fig. 1) is a skip-connected encoder–decoder associated with an adver-
sary encoder. With our redesign, for the first time, all nine methods
have all three SSL components for 3D medical image analysis.
3

2.1. Jigsaw

Jigsaw self-supervised learning is a popular technique for training
deep neural networks without the need for labeled data. Our 3D Jigsaw
approach builds upon the original idea proposed for 2D by Noroozi and
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Favaro (2016), extending their notion into 3D as shown in Fig. 2(a).
Our 3D jigsaw first divides an input image into a 3 × 3 × 3 grid of
3D patches and shuffles them according to a predefined permutation.
To reduce the number of classes, we selected 1000 permutations from
all possible combinations using the Hamming Distance-based algo-
rithm (Noroozi and Favaro, 2016). Each permutation is treated as a
class, and the Jigsaw puzzle is reformulated as a classification task
where the model is trained to recognize the permutation ID.

2.2. Rubik’s cube

Similar to the Jigsaw Puzzle pretext task, Rubik’s Cube predicts the
relative position of sub-cubes in pretext training (Zhuang et al., 2019).
It can be seen as the 3D extension of the jigsaw puzzle and naturally
takes advantage of volumetric medical image data. Moreover, it is a
multitask system that not only predicts the relative position of the sub-
cubes but also judges whether each cube has been rotated. This method
is a discriminative approach as both pretext tasks are classification
problems.

2.3. Deep clustering

Deep clustering extends traditional clustering methods by applying
them within neural networks. This method simultaneously learns the
parameters of the neural network and the cluster assignment of the
extracted features (Caron et al., 2018). It can be viewed as a discrimi-
native method as it learns the parameters through classification tasks.
We applied this method to the medical domain for 3D applications
by altering the Convolutional Neural Network (CNN) architecture as
illustrated in Fig. 2(c).

2.4. Rotation

The rotation-based self-supervised learning method was first intro-
duced by Gidaris et al. (2018). The idea behind this method is to
teach a CNN to recognize the rotation angle of an image without the
need of human supervision. This is done by defining four possible
rotation angles (0, 90, 180, and 270 degrees) and asking the network
to predict by which angle the image has been rotated. Building on
this concept, (Taleb et al., 2020) proposed a 3D implementation of the
rotation-based method. In our work, we adopt their implementation
and add restorative and adversarial learning to fit the rotation-based
method into our framework.

2.5. TransVW

TransVW is an innovative framework for self-supervised learning
that leverages self-discovered visual words as the supervision signal
to train a CNN using an encoder–decoder architecture with skip con-
nections and a classification head (Haghighi et al., 2021). The self-
discovered visual words are used as the supervision signal. Then,
through self-classification, the model is trained to classify each of
the visual words. TransVW is very similar to deep clustering, but
rather than using the entire image to form clusters, the self-discovering
process only considers the patches extracted from the same coordinate
across the similar images.

2.6. MoCo

MoCo (He et al., 2020) is an unsupervised visual representation
learning technique that makes use of contrastive loss. It includes two
encoders, the standard encoder and the momentum encoder. The mo-
mentum encoder computes mini-batches and stores them in a queue.
The encoders then take the same image with different augmentations
and compute the similarity between this encoding and the ones in the
queue. The standard encoder is updated using backpropagation, while
4

f

the momentum encoder is updated through a linear interpolation of the
earlier standard encoders.

The training object is formulated using the InfoNCE loss func-
tion, which maximizes the similarity between the positive pair and
minimizes the similarity between the negative pairs:

𝑞 = −𝑙𝑜𝑔
𝑒𝑥𝑝(𝑞 ⋅ 𝑘+∕𝜏)

∑𝑖=0
𝐾 𝑒𝑥𝑝(𝑞 ⋅ 𝑘𝑖∕𝜏)

(1)

2.7. BYOL

BYOL (Grill et al., 2020) utilizes a pair of neural networks known
as the online and target networks, which collaborate and mutually
enhance their learning processes. The online network is trained to pre-
dict the target network representation of an image from an augmented
view, with the input image presented under a different augmentation.
Simultaneously, the target network undergoes updates based on a
gradual average of the online network. Notably, BYOL diverges from
conventional training methods by not requiring negative samples and
abstaining from contrastive loss during its training process.

For a given input image 𝑥, BYOL generates two augmented views
𝑣 ≜ 𝑡(𝑥) and 𝑣′ ≜ 𝑡′(𝑥). From the initial augmented view 𝑣, the online
network produces a representation 𝑦𝜃 ≜ 𝑓𝜃(𝑣) and a corresponding
projection 𝑧𝜃 ≜ 𝑔𝜃(𝑦). Simultaneously, the target network generates
′
𝜉 ≜ 𝑓𝜉 (𝑣′) and the associated target projection 𝑧′𝜉 ≜ 𝑔𝜉 (𝑦′). The loss is
omputed using the mean squared error between these two projections:

𝜃 , 𝜉 ≜ ‖𝑞𝜃(𝑧𝜃) − 𝑧𝜉
′
‖

2
2 = 2 − 2 ⋅

⟨𝑞𝜃(𝑧𝜃), 𝑧′𝜉⟩

‖𝑞𝜃(𝑧𝜃)‖2 ⋅ ‖𝑧′𝜉‖2
(2)

.8. PCRL

PCRL (Zhou et al., 2021a) combines contrastive and generative
elf-supervised methods to address the challenge of preserving com-
rehensive contextual cues in medical images. An innovative aspect
nvolves a generative pretext task that recovers a transformed input
sing a designated indicator vector, promoting the encoding of richer
nformation. Additionally, a mix-up strategy is employed to diversify
mage restoration.

.9. Swin UNETR

Swin UNETR (Tang et al., 2022) employs a Swin Transformer
ncoder for processing 3D input patches in pretext tasks. The trans-
ormer is pre-trained using self-supervised tasks like image inpainting,
D rotation prediction, and contrastive learning, utilizing randomly
ropped sub-volumes with stochastic data augmentations. The Swin
ransformer extracts features at four resolutions via shifted windows
or self-attention, connecting to a CNN-based decoder with skip con-
ections at each resolution. This approach efficiently captures global
nd local information across layers, ensuring scalability for large-scale
raining.

.10. Stepwise incremental pretraining

We incrementally train United models component-by-component in
stepwise manner, yielding three learned transferable components: dis-

riminative encoders, restorative decoders, and adversarial encoders.
he pretrained discriminative encoder can be fine-tuned for target clas-
ification tasks; the pretrained discriminative encoder and restorative
ecoder, forming a skip-connected encoder–decoder network (i.e., U-
et (Ronneberger et al., 2015; Siddique et al., 2020)), can be fine-tuned
or target segmentation tasks.
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Fig. 3. We determine the best model by varying the weights of the components (a) and adjusting the training strategy (b).
Table 1
When training a United model continually component-by-component, our stepwise
incremental pretraining may choose to train the components in different sequences,
leading to various pretraining strategies. These strategies can be identified as three
types: starting training from the discriminative methods (SDM), start training from the
reconstructive methods (SRM), and start training with combined methods (SCM). This
table lists the pretraining strategies and their corresponding categories according to all
valid component sequences and associates each strategy with its resultant components.
For generality, we consider the random initialization as a pretraining strategy, which
‘‘generates’’ randomly-initialized discriminative encoders ∅, restorative decoders ∅,
and adversary encoders ∅. For completeness, we list all components with subscripts
indicating their pretraining strategies; for those components that cannot be trained by
a particular strategy, we indicate them explicitly with subscript ∅. We evaluate these
pretraining strategies in Table 7.

Type Pretraining strategy Resultant components

∅ Random ∅, ∅, ∅

SDM

D , ∅, ∅
D(D+R) (+), (+), ∅
D(D+R)(D+R+A) (+)(++), (+)(++),

(++)

SRM

R  , , ∅
R(R+D) (+), (+), ∅
R(R+D)(R+D+A) (+)(++), (+)(++),

′
(++)

R(R+A) (+) , (+), (+)
R(R+A)(R+A+D) (+)(++), (+)(++),

(+)(++)

SCM

(D+R) (+), (+), ∅
(D+R)(D+R+A) (+)(++),

(+)(++), ′′
(++)

(R+A) (+), (+), (+)
(R+A)(R+A+D) (+)(++),

(+)(++), (+)(++)

(D+R+A) (++), (++), ′′′
(++)

Discriminative learning trains a discriminative encoder 𝐷𝜃 , where 𝜃
represents the model parameters, to predict target label 𝑦 ∈ 𝑌 from
input 𝑥 ∈ 𝑋 by minimizing a loss function for ∀𝑥 ∈ 𝑋 defined as

𝑑 = −
𝑁
∑

𝑛=1

𝐾
∑

𝑘=1
𝑦𝑛𝑘 ln(𝑝𝑛𝑘) (3)

where 𝑁 is the number of samples, K is the number of classes, and
𝑝𝑛𝑘 is the probability predicted by 𝐷𝜃 for 𝑥𝑛 belonging to Class k; that
is, 𝑝𝑛 = 𝐷𝜃(𝑥𝑛) is the probability distribution predicted by 𝐷𝜃 for 𝑥𝑛
over all classes. In SSL, the labels are automatically obtained based
5

on the properties of the input data, involving no manual annotation.
All nine SSL methods in this work have a discriminative component
formulated as a classification task, while other discriminative losses
can be used, such as contrastive losses in MoCo-v2 (Chen et al., 2020),
Barlow Twins (Zbontar et al., 2021), and SimSiam (Chen and He, 2021).

Restorative learning trains an encoder–decoder (𝐷𝜃 , 𝑅𝜃′ ) to recon-
struct an original image 𝑥 from its distorted version  (𝑥), where  is a
distortion function, by minimizing pixel-level reconstruction error:

𝑟 = E𝑥 𝐿2(𝑥,𝑅𝜃′ (𝐷𝜃( (𝑥)))) (4)

where 𝐿2(𝑢, 𝑣) is the sum of squared pixel-by-pixel differences between
𝑢 and 𝑣.

Adversarial learning trains an additional adversary encoder, 𝐴𝜃′′ , to
help the encoder–decoder (𝐷𝜃 , 𝑅𝜃′ ) reconstruct more realistic medical
images and, in turn, strengthen representation learning. The adversary
encoder learns to distinguish the fake image pair (𝑅𝜃′ (𝐷𝜃( (𝑥))),  (𝑥))
from the real pair (𝑥,  (𝑥)) via an adversarial loss:

𝑎 = 𝐸𝑥, (𝑥)𝑙𝑜𝑔𝐴𝜃′′ ( (𝑥), 𝑥) + 𝐸𝑥𝑙𝑜𝑔(1 − 𝐴𝜃′′ ( (𝑥), 𝑅𝜃′ (𝐷𝜃( (𝑥))))) (5)

The final objective combines all losses:

 = 𝜆𝑑𝑑 + 𝜆𝑟𝑟 + 𝜆𝑎𝑎 (6)

where 𝜆𝑑 , 𝜆𝑟, and 𝜆𝑎 controls the importance of each learning ingredi-
ent. A grid-search hyper-parameter optimization was performed which
estimated the optimal values of 𝜆𝑑 = 1, 𝜆𝑟 = 1, and 𝜆𝑎 = 10.

Stepwise incremental pretraining trains a United model continually
component-by-component because the model’s complexity makes it
difficult to train the whole model in an end-to-end fashion (i.e., all three
components together directly from scratch), a strategy called D+R+A.
As depicted in Fig. 3(b), the validation performance of Strategy D+R+A
fluctuates significantly during the training process. Strategy D+R+A is
always outperformed by, for example, Strategy D(D+R)(D+R+A), as
illustrated in Fig. 1 and Strategy D(D+R)(D+R+A) provides the most
reliable performance across most target tasks evaluated in this work
(see Table 2). When training a United model continually component-
by-component, our stepwise incremental pretraining may follow dif-
ferent component sequences, leading to various pretraining strategies
as summarized in Table 1. We compare these pretraining strategies in
Section 5.1 and in Table 7.
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Table 2
Strategy D(D+R)(D+R+A) always outperforms Strategy D+R+A on all six target tasks. We include the mean and standard deviation from ten runs and
an independent two-sample t-test between the two strategies. The text is bolded when they are significantly different at p = 0.05 level.

Method Approach Pretrained component utilized for classification ECC NCC VCC

Jigsaw D+R+A (++) 84.12 ± 1.38 97.24 ± 0.73 91.62 ± 0.84
D(D+R)(D+R+A) (+)(++) 84.89 ± 1.05 97.86 ± 1.54 92.49 ± 0.51

Rubik’s Cube D+R+A (++) 84.36 ± 1.17 98.21 ± 0.88 91.8 ± 1.32
D(D+R)(D+R+A) (+)(++) 85.64 ± 0.87 99.17 ± 0.79 92.66 ± 0.57

TransVW D+R+A (++) 85.84 ± 1.84 97.63 ± 0.52 92.03 ± 0.96
D(D+R)(D+R+A) (+)(++) 86.91 ± 3.27 98.14 ± 0.44 92.95 ± 1.13

MoCo D+R+A (++) 84.84 ± 2.72 98.19 ± 0.41 91.74 ± 2.52
D(D+R)(D+R+A) (+)(++) 86.68 ± 1.69 98.63 ± 0.44 93.87 ± 0.83

Method Approach Pretrained components utilized for segmentation BMS NCS LCS

Jigsaw D+R+A (++), (++) 64.98 ± 0.68 74.32 ± 1.54 83.54 ± 0.95
D(D+R)(D+R+A) (+)(++), ((+)++) 66.07 ± 1.33 74.87 ± 1.17 84.87 ± 1.67

Rubik’s Cube D+R+A (++), (++) 65.13 ± 1.34 75.18 ± 1.32 84.12 ± 1.19
D(D+R)(D+R+A) (+)(++), (+)(++) 66.88 ± 1.72 76.07 ± 1.23 85.18 ± 0.99

TransVW D+R+A (++), (++) 66.81 ± 1.06 76.32 ± 1.25 85.16 ± 0.67
D(D+R)(D+R+A) (+)(++), (+)(++) 69.57 ± 1.13 77.51 ± 1.36 86.85 ± 0.81

MoCo D+R+A (++), (++) 67.04 ± 0.76 80.41 ± 0.36 86.09 ± 1.40
D(D+R)(D+R+A) (+)(++), (+)(++) 69.53 ± 0.81 80.47 ± 0.61 86.71 ± 0.94
p
I

P

3. Experimental setup

Model: We utilize the U-Net model with skip connections (Ronneberger
t al., 2015; Siddique et al., 2020) in our study. This model has demon-
trated state-of-the-art performance for medical imaging segmentation
asks, and we used its encoder part for classification tasks. For each
f the nine methods, we redesigned the model to incorporate all three
earning components: discriminative, restorative, and adversarial.

ine-tuning: For all experiments, we fine-tune the pretrained model
nd-to-end on the target transfer dataset. The datasets used for pre-
raining and fine-tuning are introduced below.

atasets and Metrics: We used 623 CT scans from the LUNA16 (Setio
t al., 2017) dataset to pretrain all nine of our models. We adopted the
ame approach as (Zhou et al., 2021b) and extracted sub-volumes with
size of 64 × 64 × 64 pixels. To assess the usefulness of pretraining

he nine models, we tested them on nine 3D medical imaging tasks
ncluding BraTS (Menze et al., 2014; Bakas et al., 2018), LUNA16 (Setio
t al., 2017), LIDC-IDRI (Armato III et al., 2011), PE-CAD (Tajbakhsh
t al., 2015), PE-CAD (VOIR) (Tajbakhsh et al., 2019), and LiTS (Bilic
t al., 2019). These tasks are BMS (brain tumor segmentation), NCC
reducing lung nodule false positives), NCS (lung nodule segmentation),
CC (reducing pulmonary embolism false positives), VCC (reducing
ulmonary embolism false positives with vessel-oriented image repre-
entation), and LCS (liver segmentation). We calculated the efficacy of
he pretrained models on the nine target tasks and reported the AUC
or classification tasks and IoU for segmentation tasks. All target tasks
ere executed at least 10 times, and statistical analysis was performed
sing the independent two-sample t-test.

rain tumor segmentation (BMS): The dataset, which comes from
he BraTS 2018 challenge (Menze et al., 2014; Bakas et al., 2018),
ncludes 285 patients (210 HGG and 75 LGG), each with four rigorously
ligned 3D MRI modalities (T1, T1c, T2, and Flair). In our 3-fold
ross validation method, 95 patients comprised the test fold while
90 patients comprised the training fold. Three tumor subregions were
nnotated: the necrotic and non-enhancing tumor core (label 1), the
D-enhancing tumor (label 4), and the peritumoral edema (label 2).
ere, the background was annotated (label 0). Finally, Intersection over
nion (IoU) was used to assess segmentation performance. We treated

hose with label 0 as negatives and all other data as positives.

ung nodule false positive reduction (NCC): The dataset is from
UNA16 (Setio et al., 2017) which consists of 888 CT scans with a slice
6

hickness less than 2.5 mm. With 445, 265, and 178 instances each,
the dataset is subdivided into training, validation, and testing sets.
The initial data were made available for segmenting lung nodules, but
additional annotation was made available for the task of reducing false-
positive results. Following prior work (Zhou et al., 2021b; Haghighi
et al., 2021), we evaluated the performance using the AUC score for
classifying true positives and false positive results.

Lung nodule segmentation (NCS): The dataset is made available by
the Lung Image Database Consortium image collection (LIDC-IDRI) (Ar-
mato III et al., 2011) with 1088 cases consisting of lung CT scans
with masked nodule locations. The training set contains 510 cases,
the validation set includes 100 cases, and the testing set includes 480
cases. To train using this dataset, the CT scans are re-sampled to 1-1-1
spacing, and we extract cubes with a size of 64 × 64 × 32. Following
revious work (Zhou et al., 2021b; Haghighi et al., 2021), we adopted
ntersection over Union (IoU) to evaluate performance.

ulmonary embolism false positive reduction (ECC): We employed
a database that contains 326 emboli from 121 computed tomography
pulmonary angiography (CTPA) images. Following the work of Liang
and Bi (2007), we used the proprietary algorithm-based PE candidate
generator, which yielded a total of 687 true positives and 5568 false
positives. The dataset was then split into a training and a testing set.
The training set contains 434 true positive PE candidates and 3406 false
positive PE candidates. The testing set contains 253 true positive PE
candidates and 2162 false positive PE candidates, both at the patient-
level. We calculated the candidate level AUC for distinguishing true
and false positive results to facilitate an accurate comparison with the
previous study.

Pulmonary embolism false positive reduction with vessel-oriented
image representation (VCC): In this task, we focus on using vessel-
oriented image representation (VOIR) to improve the accuracy of image
representations of PE candidates (Tajbakhsh et al., 2019). By aligning
the image planes with the vessel longitudinal axis, the VOIR approach
maximizes the visualization of pulmonary arterial filling defects and
generates more accurate representations of PE candidates. We further
extend the VOIR into 3D from Tajbakhsh et al. (2019) and evaluate the
performance of all nine methods on the false positive reduction task by
calculating the candidate level AUC.

Liver segmentation (LCS): A total of 130 labeled CT scans from
the MICCAI (Bilic et al., 2019), LiTS Challenge dataset were divided
into subgroups for training (100 patients), validation (15 patients),
and testing (15 patients). Two distinct labels, liver and lesion, were
provided by the ground truth segmentation. We used IoU to assess
segmentation performance in our studies, regarding only the liver as

a ‘‘positive class’’, and all other classes as ‘‘negative class’’.
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Table 3
Discriminative learning enhances discriminative encoders for classification and segmentation tasks. We report the mean
and standard deviation (mean ± s.d.) across ten trials, along with the statistic analysis with and without discriminative pretraining
for nine self-supervised learning methods. With discriminative pretraining, the performance gains were observed across target tasks
with exceptions in NCS for Jigsaw and Rubik’s Cube and in LCS for Rubik’s Cube, where the performance of the pretrained model
is worse than random initialization due to possible incompatibilities between pretraining and targets.

Method Pretrained component
utilized for classification

ECC NCC VCC

Random ∅ 79.99 ± 8.06 94.25 ± 5.07 91.35 ± 1.34

Jigsaw



81.79 ± 1.04* 95.49 ± 1.24* 91.51 ± 1.09
Rubik’s Cube 81.76 ± 1.32* 96.24 ± 1.57* 91.45 ± 1.35
Deep Clustering 84.82 ± 0.62*** 97.27 ± 1.43*** 91.87 ± 1.3
TransVW 84.25 ± 3.91*** 97.49 ± 0.45*** 92.04 ± 1.08**
Rotation 82.37 ± 1.64** 96.13 ± 2.41* 91.52 ± 1.72
MoCo 85.53 ± 1.97*** 98.42 ± 0.41*** 92.18 ± 0.71**
BYOL 86.34 ± 0.63*** 98.72 ± 0.44*** 92.57 ± 0.64***
PCRL 85.01 ± 0.42*** 98.06 ± 0.19*** 92.17 ± 1.58**
Swin UNETR 85.54 ± 0.42*** 98.41 ± 0.33*** 92.86 ± 0.89***

Method Pretrained components
utilized for segmentation

BMS NCS LCS

Random ∅ , ∅ 58.52 ± 2.61 74.05 ± 1.97 77.82 ± 3.87

Jigsaw

 , ∅

63.33 ± 1.11** 73.38 ± 1.65* 82.04 ± 1.65*
Rubik’s Cube 62.75 ± 1.93** 72.87 ± 0.86** 77.42 ± 0.43*
Deep Clustering 65.81 ± 0.73*** 74.82 ± 0.47* 82.67 ± 0.69**
TransVW 64.02 ± 0.98** 76.93 ± 0.87*** 85.09 ± 2.15***
Rotation 63.98 ± 0.84** 74.24 ± 0.91* 82.44 ± 1.45**
MoCo 69.19 ± 0.64*** 80.41 ± 0.36*** 86.12 ± 0.99***
BYOL 68.93 ± 0.64*** 80.70 ± 0.56*** 85.32 ± 0.72***
PCRL 68.66 ± 0.42*** 79.77 ± 0.75*** 85.51 ± 0.19***
Swin UNETR 68.59 ± 0.22*** 80.29 ± 0.31*** 85.81 ± 0.34***

* 𝑝 < 0.5.
** 𝑝 < 0.1.
*** 𝑝 < 0.05.
Table 4
Incremental restorative pretraining combined with continual discriminative learning (i.e., Strategy D(D+R)) enhances discriminative
encoders for classification tasks. We report the mean and standard deviation (mean ± s.d.) across ten trials, along with the statistic analysis
with and without incremental restorative pretraining for nine self-supervised learning methods. With Strategy D(D+R), the performance gains
from (+) were consistent for all target tasks in comparison with .

Method Approach Pretrained component(s)
utilized for classification

NCC ECC VCC

Random – ∅ 94.25 ± 5.07 79.99 ± 8.06 91.35 ± 1.34

Jigsaw D  95.49 ± 1.24 81.79 ± 1.04 91.51 ± 1.09
D(D+R) (+) 97.29 ± 1.09*** 84.39 ± 1.47*** 92.3 ± 0.57**

Rubik’s Cube D  96.24 ± 1.57 81.76 ± 1.32 91.45 ± 1.35
D(D+R) (+) 98.14 ± 0.38*** 84.14 ± 1.58*** 92.39 ± 0.69*

Deep Clustering D  97.27 ± 1.43 84.82 ± 0.62 91.87 ± 1.3
D(D+R) (+) 98.11 ± 0.55 85.12 ± 1.37 92.14 ± 0.98*

TransVW D  97.49 ± 0.45 84.25 ± 3.91 92.04 ± 1.08
D(D+R) (+) 98.47 ± 0.22* 87.07 ± 2.83* 92.57 ± 0.76*

Rotation D  96.13 ± 2.41 82.37 ± 1.64 91.08 ± 1.41
D(D+R) (+) 97.17 ± 0.81 83.57 ± 1.21* 91.25 ± 0.48

MoCo D  98.42 ± 0.41 85.53 ± 1.97 92.18 ± 0.71
D(D+R) (+) 98.65 ± 0.13* 86.93 ± 1.25* 93.68 ± 0.78

BYOL D  98.72 ± 0.44 86.34 ± 0.63 92.57 ± 0.64
D(D+R) (+) 98.84 ± 0.21 86.50 ± 0.31 93.46 ± 0.42

PCRL D  98.06 ± 0.19 85.01 ± 0.42 92.17 ± 1.58
D(D+R) (+) 98.39 ± 0.23 85.85 ± 0.48* 92.58 ± 1.14

Swin UNETR D  98.41 ± 0.33 85.54 ± 0.42 92.86 ± 0.89
D(D+R) (+) 98.67 ± 0.20 86.38 ± 0.35* 93.58 ± 0.77

* 𝑝 ≤ 0.05.
** 𝑝 ≤ 0.01.
*** 𝑝 ≤ 0.001.
4. Experiments and results

In this section, we investigate the importance of the incremental
pretraining strategy in the United framework. Further, we discuss how
to utilize each component in the United framework for downstream
tasks.
7

4.1. Discriminative encoders () are useful for both classification and
segmentation tasks

We train the discriminative encoders using nine SSL methods and
apply them to six target tasks. The discriminative learning significantly
enhances encoders in both classification and segmentation tasks, as
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Table 5
Incremental restorative pretraining combined with continual discriminative learning (i.e., Strategy D(D+R)) directly boosts target
segmentation tasks. Statistic analysis was conducted between using incremental restorative pretrained decoder ((+)) and using random
decoder (∅). With Strategy D(D+R), the segmentation performance gains from ((+), (+)) were consistent for all target tasks in
comparison with (∅, ∅) and ((+), ∅). We use ((+), ∅) to indicate that pretrained (+) is attached with a randomly-initialized
decoder ∅ to form a U-Net for segmentation without using pretrained (+), even though we have it, to highlight the capability of (+)
in boosting target segmentation performance.

Method Approach Pretrained components
utilized for segmentation

NCS LCS BMS

Random – ∅, ∅ 74.05 ± 1.97 77.82 ± 3.87 58.52 ± 2.61

Jigsaw

D(D+R)

(+), ∅ 73.58 ± 1.26 83.04 ± 1.21 64.17 ± 0.62
(+), (+) 74.53 ± 1.13* 84.17 ± 1.48*** 65.33 ± 1.31***

Rubik’s Cube (+), ∅ 74.33 ± 1.83 84.21 ± 0.24 64.91 ± 0.76
(+), (+) 75.66 ± 0.74*** 85.02 ± 1.08*** 65.83 ± 1.16***

Deep Clustering (+), ∅ 75.01 ± 0.69 83.75 ± 0.9 66.14 ± 0.87
(+), (+) 75.91 ± 1.12*** 84.63 ± 0.63*** 66.73 ± 0.51***

TransVW (+), ∅ 77.09 ± 1.52 85.63 ± 0.96 67.52 ± 0.87
(+), (+) 77.33 ± 0.52 86.53 ± 1.31* 68.82 ± 0.38***

Rotation (+), ∅ 74.65 ± 1.26 83.24 ± 2.21 64.54 ± 1.36
(+), (+) 74.86 ± 0.58* 84.65 ± 1.01*** 65.44 ± 0.67***

MoCo (+), ∅ 80.63 ± 1.01 86.3 ± 0.51 69.47 ± 0.58
(+), (+) 80.74 ± 0.36* 86.72 ± 0.60* 69.66 ± 0.41*

BYOL (+), ∅ 80.75 ± 1.24 85.72 ± 0.71 69.08 ± 0.93
(+), (+) 80.80 ± 0.73* 86.14 ± 0.37** 69.11 ± 0.47

PCRL (+), ∅ 80.53 ± 0.85 85.83 ± 0.62 69.02 ± 0.36
(+), (+) 80.64 ± 0.41 86.04 ± 0.53* 69.04 ± 0.27

Swin UNTRE (+), ∅ 80.61 ± 1.42 86.53 ± 0.79 69.30 ± 0.77
(+), (+) 80.69 ± 0.18 86.75 ± 0.28 69.52 ± 0.19*

* 𝑝 < 0.5.
** 𝑝 < 0.1.
*** 𝑝 < 0.05.
Fig. 4. Incremental adversarial training in Strategy D(D+)(D+R+A) strengthens learned representation. Target task performance is generally increased (red) following the
adversarial training. Although some target tasks show a decrease (pink), these reductions are not statistically significant, according to the t-test.
shown in Table 3. Specifically, compared with the random initializa-
tion, the Deep Clustering method improved NCC, ECC, NCS, LCS, BMS,
and VCC by AUC scores of 3.0%, 4.8%, 0.8%, 4.8%, 7.3%, and 0.5%,
respectively. Similarly, TransVW improves the target tasks by 3.2%,
4.3%, 2.9%, 7.2%, 5.5%, and 0.7%, Rotation by 1.9%, 2.4%, 0.2%,
4.6%, 5.5%, and 0.2%, MoCo by 4.2%, 5.5%, 6.4%, 8.3%, 10.6%,
and 0.8%, BYOL by 0.1%, 0.2%, 0.1%, 0.8%, 0.2%, and 0.9%, PSL by
0.3%, 0.8%, 0.9%, 0.5%, 0.4%, and 0.4%, and SWU by 0.3%, 0.87%,
0.4%, 0.9%, 0.9%, 0.7%. The Jigsaw method improved NCC, ECC, LCS,
BMS, and VCC by AUC scores of 1.3%, 1.8%, 4.2%, 3.8%, and 0.2%,
8

respectively. The Rubik’s Cube method improved in NCC, ECC, BMS,
and VCC by AUC scores of 2.0%, 1.8%, 4.2%, and 0.1%, respectively.

4.2. Incremental restorative pretraining combined with continual discrim-
inative learning ( i.e., strategy D(D+R)) further enhances discriminative
encoders for classification tasks

After pretraining discriminative encoders, we append restorative
decoders to the end of the encoders and continue to pretrain them
together. The incremental restorative learning significantly enhances
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Fig. 5. Stepwise incremental pretraining D(D+R)(D+R+A) helps reduce annotation costs. As an example, for target tasks of NCC, NCS, and ECC, incremental pretrained
TransVW with Strategy D(D+R)(D+R+A) reduces the annotation cost by 28%, 43%, and 26%, respectively, in comparison with Strategy D(D+R), and by 57%, 61%, and 66%,
respectively, comparison with training from scratch.
Fig. 6. We tested different variants of the stepwise incremental pretraining scheme R(R+D) and D(D+R) with components D and R. Compared to the end-to-end training scheme
(D+R), R(R+D) increased the target task performance the majority of the time. The only two performance decreases are for Jigsaw on BMS and NCS but they were not significant
according to the t-test. D(D+R) always improved performance on all five target tasks compared to (D+R). For five out of six methods, D(D+R) also had better performance on all
five target tasks compared to R(R+D). The only exception is for the Deep Clustering where R(R+D) always performs better than D(D+R). We believe that this is because for Deep
Clustering, training the reconstruction (R) first helps to initialize the clusters, yielding better overall performance.
encoders in classification tasks, as shown in Table 4. Specifically, com-
pared with the original methods, the incremental restorative learning
improves Jigsaw by AUC scores of 1.9%, 2.6%, and 0.8% in NCC, ECC,
and VCC; similarly, it improves Rubik’s Cube by 1.9%, 2.4%, and 0.9%,
Deep Clustering by 0.9%, 0.3%, and 0.3%, TransVW by 1.0%, 2.9%,
and 0.5%, Rotation by 1.0%, 1.2%, and 0.2%, MoCo by 0.2%, 1.4%,
and 1.5%, BYOL by 0.1%, 0.2%, and 0.9%, PCRL by 0.3%, 0.8%, and
0.4%, and Swin UNTRE by 0.3%, 0.8%, and 0.7%. The discriminative
encoders are enhanced because they learn global features along with
fine-grained features through incremental restorative learning.

4.3. Incremental restorative pretraining combined with continual discrimi-
native learning ( i.e., strategy D(D+R)) directly boosts target segmentation
tasks

Most state-of-the-art segmentation methods do not pretrain their
decoders, but instead initialize them at random (He et al., 2020; Chen
et al., 2020). Table 5 shows that the random decoders are suboptimal,
while incremental pretrained restorative decoders can significantly
improve target segmentation tasks. Specifically, compared with the D
methods, the incremental pretrained restorative decoder improves Jig-
saw by 1.2%, 2.1% and 2.0% IoU improvement in NCS, LCS and BMS,
respectively. Similarly, it improves Rubik’s Cube by 2.8%, 7.6%, and
3.1%; Deep Clustering by 1.1%, 2.0%, and 0.9%; TransVW by 0.4%,
1.4%, and 4.8%; Rotation by 0.6%, 2.2% and 1.5%; MoCo by 0.1%,
9

0.4%, and 0.2%, BYOL by 0.2%, 0.4%, and 0.1%, PCRL by 0.1%, 0.2%,
and 0.1%, and Swin UNTRE by 0.1%, 0.2%, and 0.2%. The consistent
performance gains indicate that a wide variety of target segmentation
tasks can benefit from our incremental pretrained restorative decoders.

4.4. Strategy D(D+R)(D+R+A) strengthens representation learning and
reduces annotation costs

Quantitative measurements shown in Table 6 reveal that adver-
sarial training can generate sharper and more realistic images in the
restoration proxy task. More importantly, we found that adversarial
training also makes a significant contribution to pretraining. First, as
shown in Fig. 4, adding adversarial training can benefit most target
tasks, particularly segmentation tasks. The incremental adversarial pre-
training improves Jigsaw by AUC scores of 0.3%, 0.7%, and 0.7%
in NCS, LCS, and BMS, respectively. Similarly, it improves Rubik’s
Cube by 0.4%, 1.0%, and 1.0%; Deep Clustering by 0.5%, 0.5%, and
0.5%; TransVW by 0.2%, 0.3%, and 0.8%; Rotation by 0.1%, 0.1%,
and 0.7%; BYOL by 0.1%, 0.1%, and 0.1%, PCRL by 0.1%, 0.1%,
and 0.1%, and Swin UNTRE 0.3%, 0.2%, and 0.2%. Additionally,
incremental adversarial pretraining improves performance on small
data regimes. Fig. 5 shows that incremental adversarial pretrained
TransVW (Haghighi et al., 2021) can reduce the annotation cost by
28%, 43%, and 26% on NCC, NCS, and ECC, respectively, compared
with TransVW (Haghighi et al., 2021).
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Fig. 7. Target task performance (BMS, NCS, and ECC) for Jigsaw and Deep Clustering trained at 100, 200, and 300 epochs. For each method, we employ eight strategies to
train the model, including D, D+R, D+R+A, D(D+R), R(R+D), D(D+R)(D+R+A), and R(R+D)(R+D+A), which are the most representative. In stepwise incremental pretraining, it
is typical for one step to be taken for 100 epochs. Therefore, for example, at 100 epochs, the model with the strategy D(D+R) does not exist. For the sake of fair comparison,
we prolong the training of, for example, strategy D, to 200 and 300 epochs to compare it with other strategies that are trained with the same number of epochs. Over additional
epochs, incrementally pretrained models consistently outperform jointly trained ones. For example, at 200 epochs, D(D+R) and R(R+D) surpass D+R+A, while at 300 epochs,
D(D+R)(D+R+A) and R(R+D)(R+D+A) yield the best performance.
5. Discussion

5.1. Comparing different incremental pretraining strategies in the unified
framework for downstream tasks

The self-supervised methods we selected are primarily discrimi-
native/contrastive methods, with reconstructive and adversarial com-
ponents being universal across all methods. It is possible to vary
the reconstructive and adversarial components while maintaining the
same discriminative/contrastive component across all the methods.
However, this would introduce an exponentially larger number of
combinations, which is beyond the scope of this work. When the only
variable becomes the discriminative component, we further identify
two types of discriminative methods: clustering or non-clustering. We
then test the performance of each methods through different training
strategies.
10
The training strategies can also be identified as three types: start-
ing training from the discriminative methods (SDM), start training
from the reconstructive methods (SRM), and start training with com-
bined methods (SCM). The SDM strategy includes D, D(D+R), and
D(D+R)(D+R+A). The SRM strategy includes R, R(R+D), R(R+A),
R(R+D)(R+D+A), and R(R+A)(R+A+D). The SCM strategy includes
(D+R), (D+R)(D+R+A), (R+A)(R+A+D), and (D+R+A).

The combined use of discriminative and restorative methods (strat-
egy D+R) consistently outperforms the individual use of either method
(strategies D or R), as evident in Table 7. Furthermore, the models’
performances are further enhanced with the pretraining of one of
the methods (D or R). As shown in Fig. 6, D(D+R) is always better
than (D+R) across all target tasks with all nine methods and gen-
erally better than R(R+D) except for Deep Clustering and TransVW.
At last, we perform pretraining with all three components (D, R,
and A) and observe that the stepwise incremental pretraining strat-
egy consistently outperforms the combined training strategy, with the
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Table 6
The final stepwise incremental pretraining (Step D(D+R)(D+R+A)) generates sharper and more realistic images for restoration tasks. After
further adversarial training, the MSE and FID scores for each of the nine approaches all declined, suggesting that the produced images’
distribution had moved closer to the original one. The MS-SSIM score increased after the adversarial training, indicating the generated
images were structurally similar to the original one.
Method Adv. Pretrained components utilized MSE (↓) FID (↓) MS-SSIM (↑)

Jigsaw ✗ (+) , (+) 0.0168 ± 0.0024 338.245 0.8335 ± 0.0024
✓ (+)(++) , (+)(++) 0.0143 ± 0.0017 317.354 0.8724 ± 0.0012

Rubik’s Cube ✗ (+) , (+) 0.0139 ± 0.0011 314.323 0.8856 ± 0.0015
✓ (+)(++) , (+)(++) 0.0115 ± 0.0005 257.698 0.9127 ± 0.0007

Deep Clustering ✗ (+) , (+) 0.0123 ± 0.0019 295.645 0.8973 ± 0.0021
✓ (+)(++) , (+)(++) 0.0108 ± 0.0012 244.742 0.9268 ± 0.0018

TransVW ✗ (+) , (+) 0.0289 ± 0.0027 427.562 0.7383 ± 0.0032
✓ (+)(++) , (+)(++) 0.0109 ± 0.0015 251.325 0.9088 ± 0.0015

Rotation ✗ (+) , (+) 0.0184 ± 0.0052 356.32 0.7914 ± 0.0032
✓ (+)(++) , (+)(++) 0.0129 ± 0.0021 309.214 0.8932 ± 0.0028

MoCo ✗ (+) , (+) 0.0097 ± 0.0012 221.42 0.9324 ± 0.0014
✓ (+)(++) , (+)(++) 0.0075 ± 0.0008 204.58 0.9536 ± 0.0037
Table 7
Comparing different training strategies. We report the mean and standard deviation (mean ± s.d.) based on ten trials, along with the statistic analysis between the best (highest
mean value) and the worst (lowest mean value) training strategies among similar setups (e.g., the same number of components and training steps) for Jigsaw, Deep Clustering, and
Rotation. Increasing training steps generally improves performance. For Jigsaw and Rotation, starting with Discriminative Encoders yields better results, while for Deep Clustering,
starting with reconstructive pretraining is more effective. This phenomenon is attributed to reconstructive pretraining enhancing feature learning for clustering.

Method Approach Pretrained components
utilized for segmentation

BMS NCS Pretrained component
utilized for classification

ECC

Jigsaw

(D) , ∅ 63.33 ± 1.11 73.38 ± 1.65  81.79 ± 1.04
(R) ,  62.94 ± 0.84 73.17 ± 1.84  81.05 ± 1.70

(D+R) (+) , (+) 64.44 ± 0.97 73.6 ± 1.48 (+) 83.84 ± 1.02
(R+A) (+) , (+) 63.98 ± 0.57 73.46 ± 1.15 (+) 83.07 ± 1.32
D(D+R) (+) , (+) 65.33 ± 1.31*** 74.53 ± 1.13*** (+) 84.49 ± 1.38***
R(R+D) (+) , (+) 64.14 ± 0.81 73.71 ± 0.78 (+) 83.66 ± 1.2
R(R+A) (+) , (+) 64.21 ± 0.97 73.33 ± 0.47 (+) 83.44 ± 0.93

(D+R+A) (++) , (++) 64.98 ± 0.68 74.32 ± 1.32 (++) 84.12 ± 1.38
(D+R)(D+R+A) (+)(++) , (+)(++) 65.34 ± 1.13 74.76 ± 1.02 (+)(++) 84.73 ± 0.66*
(R+A)(R+A+D) (+)(++) , (+)(++) 64.63 ± 1.69 73.95 ± 1.77 (+)(++) 83.76 ± 1.4
D(D+R)(D+R+A) (+)(++) , (+)(++) 66.07 ± 1.33*** 74.87 ± 1.17* (+)(++) 84.89 ± 1.05**
R(R+D)(R+D+A) (+)(++) , (+)(++) 65.03 ± 1.24 73.96 ± 0.97 (+)(++) 83.94 ± 1.48
R(R+A)(R+A+D) (+)(++) , (+)(++) 64.97 ± 0.91 73.57 ± 1.88 (+)(++) 84.02 ± 1.7

Deep Clustering

(D) , ∅ 65.81 ± 0.73 74.82 ± 0.47  84.82 ± 0.62
(R) ,  63.65 ± 0.41 74.26 ± 0.78  83.07 ± 0.89

(D+R) (+) , (+) 64.53 ± 0.81 74.24 ± 1.63 (+) 84.13 ± 1.89
(R+A) (+) , (+) 64.12 ± 0.93 74.03 ± 1.21 (+) 83.92 ± 1.12
D(D+R) (+) , (+) 66.73 ± 0.51 75.91 ± 1.12 (+) 85.12 ± 1.37
R(R+D) (+) , (+) 67.58 ± 0.34*** 76.32 ± 0.78 (+) 85.41 ± 0.94*
R(R+A) (+) , (+) 67.34 ± 0.91 76.61 ± 0.76*** (+) 85.28 ± 0.73

(D+R+A) (++) , (++) 65.9 ± 1.72 74.66 ± 1.89 (++) 84.57 ± 1.66
(D+R)(D+R+A) (+)(++) , (+)(++) 66.8 ± 0.71* 76.18 ± 0.95** (+)(++) 84.59 ± 0.5
(R+A)(R+A+D) (+)(++) , (+)(++) 65.96 ± 1.29 74.51 ± 1.39 (+)(++) 84.2 ± 0.94
D(D+R)(D+R+A) (+)(++) , (+)(++) 67.22 ± 2.33 76.38 ± 1.63 (+)(++) 84.82 ± 0.62
R(R+D)(R+D+A) (+)(++) , (+)(++) 68.36 ± 1.14** 77.25 ± 1.11** (+)(++) 85.57 ± 1.84
R(R+A)(R+A+D) (+)(++) , (+)(++) 68.22 ± 0.86 76.71 ± 1.24 (+)(++) 85.69 ± 1.41***

Rotation

(D) , ∅ 65.81 ± 0.73 74.82 ± 0.47  84.82 ± 0.62
(R) ,  63.72 ± 0.58 74.35 ± 0.97  83.23 ± 1.17

(D+R) (+) , (+) 64.78 ± 0.98 74.37 ± 0.69 (+) 83.12 ± 1.43
(R+A) (+) , (+) 64.17 ± 0.87 74.11 ± 1.16 (+) 83.83 ± 1.05
D(D+R) (+) , (+) 65.44 ± 0.67** 74.86 ± 0.58** (+) 83.86 ± 1.12*
R(R+D) (+) , (+) 64.88 ± 0.91 74.61 ± 0.76 (+) 82.92 ± 0.83
R(R+A) (+) , (+) 64.13 ± 0.43 74.55 ± 0.81 (+) 83.03 ± 0.59

(D+R+A) (++) , (++) 64.92 ± 1.52 74.56 ± 0.97 (++) 83.34 ± 1.56
(D+R)(D+R+A) (+)(++) , (+)(++) 65.52 ± 1.19 74.94 ± 0.61 (+)(++) 84.12 ± 0.95
(R+A)(R+A+D) (+)(++) , (+)(++) 64.99 ± 0.87 74.58 ± 1.14 (+)(++) 83.47 ± 1.27
D(D+R)(D+R+A) (+)(++) , (+)(++) 66.13 ± 0.65* 74.93 ± 0.62* (+)(++) 84.62 ± 1.37**
R(R+D)(R+D+A) (+)(++) , (+)(++) 65.24 ± 0.73 74.24 ± 0.91 (+)(++) 83.58 ± 0.94
R(R+A)(R+A+D) (+)(++) , (+)(++) 65.32 ± 0.88 74.12 ± 0.64 (+)(++) 83.62 ± 1.21

* 𝑝 < 0.5.
** 𝑝 < 0.1.

*** 𝑝 < 0.05.
ame number of training epochs being performed (Fig. 7). Table 7
11

ndicates that the D(D+R)(D+R+A) strategy performs best for Jig-
saw and Rotation in downstream tasks, whereas R(R+D)(R+D+A) and
R(R+A)(R+A+D) outperforms the D(D+R)(D+R+A) strategy for Deep
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Fig. 8. Adversarial encoders learnt weak representation, and they are not suitable for target tasks. (++) pretrained with all nine SSL methods perform worse than ∅,
indicating that their learned representations are not suitable for the target task. By contrast, SSL initialized discriminative encoders ((+)(++)) all perform better than random
initialization (∅) and (++) for the target task.
Clustering. While incremental pretraining with SDM strategy typically
yields the best performance for most methods, Deep Clustering benefits
more from the incremental pretraining with SRM strategy. In our
extensive experiments, we conclude that for non-clustering types of
discriminative methods, it is best practice to use the SDM strategy,
while for clustering types of discriminative methods, SRM strategy
yields the best performances. We believe this phenomenon is due to
the fact that reconstructive pretraining helps the encode learn features
more consistent with appearance, thereby enabling clustering.

5.2. Adversarial encoders are not suitable for transfer learning as they learn
weak representations

With stepwise incremental pretraining, we obtain two pretrained
encoders, (+)(++) and ++, from the ‘‘United’’ model for
target tasks.We evaluate their performance on the task of lung nodule
false positive reduction (NCC) with two settings: (1) linear evaluation,
which fixes the pre-trained network and uses the features it computes to
train a linear classifier for the target task, and (2) full fine-tuning of the
pre-trained network for the target task. For linear evaluation, there is
a significant performance difference between Encoder (+)(++)
and Encoder  . As shown in Fig. 8, the adversarial encoders
12

++
are weaker than discriminative encoders. We believe it is because the
only pretraining supervision signal for the adversarial encoders is to
distinguish real and fake images. This results in decreased performance
for Jigsaw by AUC scores of 4.0%. Similarly, Rubik’s Cube decreased by
6.7%, Deep Clustering by 7.2%, TransVW by 9.6%, Rotation by 3.9%,
MoCo by 6.6%, BYOL by 6.0%, PCRL by 6.9%, and Swin UNETR by
5.1%. Furthermore, the adversarial encoders’ performance is also worse
than that of random initialized encoders ∅. This results in decreased
performance for Jigsaw by AUC scores of 1.9%, for Rubik’s Cube by
1%, for Deep Clustering by 2.8%, for TransVW by 5.7%, for Rotation
by 2.3%, for MoCo by 3.6%, for BYOL by 3.3%, PCRL by 3.9%, and
Swin UNETR by 2%. It is evident that the fixed features computed
by the pretrained Encoder ++ do not transfer well for the target
task. Even when compared with the randomly initialized Encoder ∅,
the computed features become less useful. We further evaluate the two
encoders through full fine-tuning. While the Encoder ++ improves
compared to its evaluation using linear evaluation, it still lags behind
Encoder (+)(++). More importantly, the adversarial encoders’
performance is not stable compared to discriminative encoders, as their
standard deviations are higher.
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6. Conclusion

We have developed a United framework that integrates discrim-
inative SSL methods with restorative and adversarial learning. Our
extensive experiments demonstrate that our pretrained United models
consistently outperform the SoTA baselines. This performance improve-
ment is attributed to our stepwise incremental pretraining scheme,
which not only stabilizes the pretraining but also unleashes the syn-
ergy of discriminative, restorative, and adversarial learning. We expect
that our pretrained United models will exert an important impact
on medical image analysis across diseases, organs, modalities, and
specialties.
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