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Abstract

Infrared Small Target Detection (IRSTD) refers to detect-
ing faint targets in infrared images, which has achieved
notable progress with the advent of deep learning. How-
ever, the drive for improved detection accuracy has led to
larger, intricate models with redundant parameters, causing
storage and computation inefficiencies. In this pioneering
study, we introduce the concept of utilizing network prun-
ing to enhance the efficiency of IRSTD. Due to the challenge
posed by low signal-to-noise ratios and the absence of de-
tailed semantic information in infrared images, directly ap-
plying existing pruning techniques yields suboptimal perfor-
mance. To address this, we propose a novel wavelet structure-
regularized soft channel pruning method, giving rise to the
efficient IRPruneDet model. Our approach involves repre-
senting the weight matrix in the wavelet domain and for-
mulating a wavelet channel pruning strategy. We incorporate
wavelet regularization to induce structural sparsity without
incurring extra memory usage. Moreover, we design a soft
channel reconstruction method that preserves important tar-
get information against premature pruning, thereby ensuring
an optimal sparse structure while maintaining overall sparsity.
Through extensive experiments on two widely-used bench-
marks, our IRPruneDet method surpasses established tech-
niques in both model complexity and accuracy. Specifically,
when employing U-net as the baseline network, IRPruneDet
achieves a 64.13% reduction in parameters and a 51.19%
decrease in FLOPS, while improving IoU from 73.31% to
75.12% and nIoU from 70.92% to 74.30%. The code is avail-
able at https://github.com/hd0013/IRPruneDet.

Introduction
Single frame infrared small target (SIRST) detection plays
an irreplaceable role in many practical applications, such as
traffic management and maritime rescue (Cuccurullo et al.
2012; Law et al. 2016; Zhang and Tao 2020). When dealing
with target detection tasks (Zou et al. 2023) in visible im-
ages, challenges arise under conditions of weak illumination
and occlusion. In contrast, infrared images excel at capturing
target information due to their penetrating infrared thermal
radiation. Nevertheless, SIRST comes with stringent criteria
(Chapple et al. 1999): target size below 0.15% of the total
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Figure 1: Comparison between the proposed IRPruneDet
and other deep learning-based models on the NUAA-SIRST
dataset. The area of the gray circles denotes the number of
FLOPs. IRPruneDet achieves the highest IoU while main-
taining the lowest parameters and FLOPs.

image, contrast ratio under 15%, and signal-to-noise ratio
(SNR) below 1.5. Consequently, overcoming these obsta-
cles involving small targets, noise, clutter, and object inter-
ference has sparked significant research interest in infrared
small target detection (IRSTD) in recent years.

To cope with the above difficulties in IRSTD, traditional
methods (Dai and Wu 2017; Han et al. 2020) usually em-
ploy filtering techniques to filter out background interfer-
ence or image enhancement methods to enhance targets.
However, these methods heavily rely on hyper-parameter
tuning and exhibit certain limitations when confront with
complex scenes characterized by variations in illumination,
complex backgrounds, and target occlusion. In light of the
rapid advancements in deep learning, an increasing number
of deep convolutional neural network (CNN)-based mod-
els have demonstrated superior performance in IRSTD. For
instance, the pioneering implementation of deep CNN for
IRSTD can be attributed to the miss detection vs. false alarm
(MDvsFA) model (Wang, Zhou, and Wang 2019). It em-
ploys two generative adversarial networks (GANs) (Good-
fellow et al. 2020) to separately reduce MD and FA while re-
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quiring a considerable number of computations (see Fig. 1).
Dai et al. achieve significant advancements over MDvsFA
by replacing GANs with a U-net in asymmetric context
modulation (ACM) approach (Dai et al. 2021a). Further-
more, they propose an attentional local contrast network
(ALCNet) (Dai et al. 2021b) to effectively combine dis-
criminative and model-driven methods by increasing the net-
work size. By propagating the target features to deeper lay-
ers of the network, Zhang et al. (Zhang et al. 2022b) present
a feature compensation and cross-level correlation network
(FC3-Net), which achieves superior detection performance
while having much more parameters and computations than
ALCNet and ACM. As the complexity of a model increases,
the number of model parameters and computations grows
significantly, leading to inefficiencies in storage, memory,
and computation. Directly deploying them on platforms with
limited resources is impractical. Therefore, there exists an
imperative demand to explore a lightweight network archi-
tecture for efficient IRSTD.

Recently, model compressing methods have been pro-
posed to devise lightweight networks for various tasks (Han
et al. 2015; Rastegari et al. 2016; Denton et al. 2014; Hin-
ton, Vinyals, and Dean 2015). Among them, structured prun-
ing (He et al. 2019b) has garnered recognition for its ability
to achieve practical storage space savings and inference ac-
celeration on general-purpose hardware. This approach can
prune redundant filters in convolutional layers. Nevertheless,
the existing pruning methods encounter challenges that hin-
der their direct applicability to CNN-based IRSTD models.
(1) The conventional criteria used to evaluate channel im-
portance are not applicable to the IRSTD task. Currently,
pruning methods predominantly rely on criteria that assess
the informative importance within channels, assuming that
channels with greater magnitude are more vital (Huang et al.
2021). However, due to the low SNR in infrared images,
channels containing background noise and clutter often ex-
hibit higher magnitudes. Consequently, relying on conven-
tional criteria may erroneously prune important channels
that have low magnitudes but contain crucial information
about small targets, leading to the discarding of important
channels. (2) During the iterative channel pruning process,
certain channels that contain important information may
be pruned prematurely and deactivated permanently. In the
IRSTD task, the targets typically have small sizes, resulting
in a limited number of channels carrying important informa-
tion. The erroneous pruning of critical channels can lead to
a drastic decrease in detection accuracy.

In this study, we introduce the concept of utilizing net-
work pruning to enhance the efficiency of IRSTD for the
first time. Specifically, we propose a novel wavelet structure-
regularized soft channel pruning method, resulting in the ef-
ficient IRPruneDet model (see Fig. 2). Firstly, we design
a wavelet channel pruning (WCP) strategy based on the
wavelet-based sparse constraint. Through wavelet analysis
of convolutional layers, weight matrices are decomposed
into low and high-frequency components. By applying l1-
norm regularization to these wavelet coefficients, we assess
channel importance according to their magnitude. To man-
age memory, we propose a memory-efficient wavelet-based

pruning criterion within an energy minimization framework,
treating the wavelet transform of weight matrices akin to
their differential operators. Additionally, we avoid prema-
ture pruning of channels holding crucial SIRST informa-
tion by implementing a soft channel reconstruction (SCR)
method. This involves dynamically retaining parameters of
convolutional layers with the highest detection accuracy dur-
ing pruning. For soft channel reconstruction, we combine
channel reconstruction with the pruning process, randomly
interpolating between recovered pruned channel parameters
and those associated with optimal performance. Our method
assesses the importance of all channels to obtain desired net-
work structure while adhering to sparsity constraints. Ex-
periments on two widely-used benchmarks demonstrate that
IRPruneDet outperforms existing methods in detection ac-
curacy, while significantly reducing FLOPs and parameters.

In summary, the contribution of this study is three-fold.
(1) We propose an efficient IRPruneDet model for IRSTD.
To the best of our knowledge, IRPruneDet is the first at-
tempt to design a lightweight network architecture tailored
for the IRSTD task via network pruning. Using U-net18 as
the baseline network, IRPruneDet reduces 64.13% parame-
ters and 51.19% FLOPS while improving IoU from 73.31%
to 75.12% and nIoU from 70.92% to 74.30% on the NUAA-
SIRST dataset. (2) We design a WCP strategy by represent-
ing the weight matrix in the wavelet domain. To encourage
structural sparsity without imposing additional memory re-
quirements, we design and incorporate a novel wavelet reg-
ularization penalty into the network. (3) We develop an SCR
method for the pruning process. It can mitigate the risk of
prematurely and incorrectly pruning channels that carry crit-
ical information, thereby ensuring the preservation of impor-
tant network features throughout the pruning procedure.

Related Work
Infrared Small Target Detection
The IRSTD algorithms can be categorized into traditional
and deep learning-based methods. Traditional techniques fo-
cus on extracting distinctive features in infrared (IR) images.
These methods encompass filter-based methods like the
max-median filter (Deshpande et al. 1999) and top-hat filter
(Bai and Zhou 2010), low-rank methods such as weighted
strengthened local contrast measure (WSLCM) (Han et al.
2020) and tri-layer local contrast measure (TTLCM) (Chen
et al. 2013), along with HVS-based methods such as in-
frared patch-image (IPI) (Gao et al. 2013), non-convex rank
approximation minimization (NARM) (Zhang et al. 2018),
and the partial sum of the tensor nuclear norm (PSTNN)
(Zhang and Peng 2019). With the advent of deep learning,
CNN-based techniques (Zhang et al. 2022a; Li et al. 2022a;
McIntosh, Venkataramanan, and Mahalanobis 2020; Zhang
et al. 2023) are introduced into the IRSTD task. For instance,
MDvsFA (Wang, Zhou, and Wang 2019) eschews the tradi-
tional approach of relying on a single goal to jointly reduce
MD and FA by decomposing it into two subtasks with two
GANs (Goodfellow et al. 2020). To preserve feature infor-
mation, Dai et al. (Dai et al. 2021a) propose an ACM model
with global context feedback and a modulation path using
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Figure 2: Illustration of the proposed IRPruneDet method. The pruning process of a specific convolutional layer is used to
illustrate the dynamic iterative process of IRPruneDet, which includes wavelet channel pruning (WCP), training, soft channel
reconstruction (SCR), and final hard channel pruning to obtain a sparse model. WCP assesses channel importance based on the
l1-norm of the wavelet decomposition coefficients obtained by convolving the weight matrix with the Haar wavelet.

pointwise channel attention to exchange high-level seman-
tics and low-level details. Furthermore, Dai et al. (Dai et al.
2021b) introduce a feature map cyclic shifting scheme and
present an ALCNet with increased network size. Zhang et
al. (Zhang et al. 2022b) develop an even larger network FC3-
Net. However, these methods enhance small IR target detec-
tion by scaling up network size to increase model capacity
and extract semantic features. This strategy often leads to
increased model size, memory footprint, and computations.

Neural Network Pruning
Pruning (Han et al. 2015) removes unimportant structures in
the network to produce a sparse and efficient model. Chan-
nel pruning (Li et al. 2016), a subset of this technique, falls
into two categories based on channel status after pruning:
hard and soft pruning. Hard pruning permanently deactivates
channels identified by specific criteria (Sui et al. 2021; He
et al. 2019b; Liu et al. 2017; Wang, Li, and Wang 2021;
Tang et al. 2020; He et al. 2021). For instance, Li et al. (Li
et al. 2016) introduce a pruning filter for efficient convNets
(PEEC), which calculates channel importance via l1-norm
(Li et al. 2016). HRank (Lin et al. 2020) suggests evaluat-
ing channel importance using the rank of convolutional layer
weights. In contrast, soft pruning involves dynamic channel
pruning without permanent discarding (He et al. 2019a; Guo
et al. 2020; Lin et al. 2019; Ding et al. 2019; He et al. 2022).
Channels’ weights are approximated to 0, permitting their
participation in future training and pruning iterations. For
example, soft filter pruning (SFP) (He et al. 2018) generates
masks based on channel norms over time, allowing updates
in subsequent phases. Operation-aware soft channel pruning
(SCP) (Kang and Han 2020) formulates discrete masks to
differentiable forms for joint learning of model parameters

and dynamic masks. To the best of our knowledge, no prior
research has explored network pruning within the context of
IRSTD. Our goal is to bridge this gap by utilizing the idea
of network pruning to develop an efficient IRSTD model.

Methodology
Preliminaries
Given an infrared image XIR, the IRSTD problem based on
deep learning can be formulated:

YIR = fdet (XIR;Θ) , (1)

where fdet is a trainable deep neural network, Θ repre-
sents the model parameters, and YIR denotes the segmen-
tation mask of targets in the infrared image. Without loss
of generality, it is assumed that there exist L layers of pa-
rameters, where the lth convolution layer can be param-
eterized by

{
W (l) ∈ RCl×Cl−1×K×K , 1 ≤ l ≤ L

}
. Here,

W (l), Cl, Cl−1, K represent the learnable weight matrix
(i.e., model parameters), the number of output channels, the
number of input channels, and the kernel size of the ith con-
volutional layer, respectively. During the process of channel
pruning, we can conceptualize the above model parameters
W (l) as a series of filters F (l), which can be represented as
a set of

{
F

(l)
j ∈ RCl−1×K×K , 1 ≤ j ≤ Cl, 1 ≤ l ≤ L

}
.

Wavelet Channel Pruning
In the IRSTD task, the detection accuracy is often reduced
due to the loss of edge information of the targets. Accord-
ingly, while pruning the CNN-based network, it’s essential
to preserve channels that contribute more to the edge infor-
mation, ensuring that the network’s performance remains in-
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tact despite the reduction in model size. In the image pro-
cessing domain, wavelet-based analysis (Mallat 1989) has
been widely-used to decompose one image into wavelet co-
efficients containing low-frequency and high-frequency in-
formation. In the context of IRSTD, our investigation sug-
gests that channels with higher high-frequency coefficients,
as transformed by the wavelet framework, possess more
edge information of the targets. Furthermore, the lp-norm of
the wavelet decomposition coefficients of a channel, com-
puted for each convolutional layer, can effectively indicate
the significance of the channel in terms of containing the
edge information of the targets. To this end, we propose to
regularize the l1-norm of the wavelet decomposition coeffi-
cients, which can promote sparsity by pushing the weights
of unimportant channels to zero during training. It can be
formulated as follows:

min
F

1

N

N∑
i=1

L (Yi, f (Xi,F )) + λ
N∑
i=1

∥HF ∥1, (2)

where L(·) denotes the loss function. f(·), Xi, Yi are the
prediction, input, and the ground truth label, respectively.
H represents the two-dimensional discrete wavelet trans-
form (DWT). λ is a hyper-parameters to balance the two
loss terms. However, to apply the wavelet-based coefficient
regularization penalty to the network, additional memory is
required to store the results of wavelet transform for each
filter F in the network. To address this issue, we propose to
approximate the DWT as a differential operator.

Specifically, we adopt the two-dimensional Haar tight
frame system (Chui 1992). When processing F , particu-
larly F

(l)
j ∈ RCl−1×K×K , we convert it to a 2D shape

fu ∈ RM×M by tiling the K × K filters (i.e., if Cl−1 =
p × p, then M = p ∗ k). The Haar basis is defined
as: S0,0 = 1

4 [1, 1; 1, 1], S0,1 = 1
4 [1,−1; 1,−1], S1,0 =

1
4 [1, 1;−1,−1], S1,1 = 1

4 [1,−1;−1, 1]. Denoting Ω as a
domain in the two-dimensional real space R2, there exists
u ∈ L2(Ω) (Li et al. 2022b), which is sufficiently smooth
and related to fu, i.e.,

(fu) [i, j] = u (xi, yj) , s.t. (xi, yj) = (ih, jh) ,

and 0 ≤ i, j ≤ N,
(3)

where h is the reciprocal of N . Consequently, the regular-
ization penalty term for a certain filter F in the network can
be expressed as:

∥HF ∥1 = h2
∑
i,j

((
2

h
)2(|(S0,1 [−.]⊗ fu) [i, j]|2

+ |(S1,0 [−.]⊗ fu) [i, j]|2))1/2. (4)

The Taylor expansion of u at point (xi, yj) is given by:
2

h
(S0,1 [−.]⊗ fu) [i, j] =

1

2h
(u (xi, yj)− u (xi − h, yj))

+
1

2h
(u (xi, yj − h)− u (xi − h, yj − h)) ,

(5)

2

h
(S1,0 [−.]⊗ fu) [i, j] =

1

2h
(u (xi, yj)− u (xi, yj − h))

+
1

2h
(u (xi − h, yj)− u (xi − h, yj − h)) .

(6)

In the case where h approaches 0, we can derive the follow-
ing equation from the concept of partial derivatives:

2

h
(S0,1 [−.]⊗ fu) [i, j] +

2

h
(S1,0 [−.]⊗ fu) [i, j]

= ux (xi, yj) + uy (xi, yj) .
(7)

Based on Eq. (4), we have:

∥HF ∥1 =

∫
Ω

√
u2
x + u2

ydxdy. (8)

Thus, we can combine the wavelet-based sparse regulariza-
tion term in Eq. (2) with the gradient of the weight ma-
trix itself, reducing the memory overhead while efficiently
learning sparse network structures. Note that the existence of∫
Ω
|∇u| dxdy =

∫
Ω

√
u2
x + u2

ydxdy is due to the sufficient
smoothness of u. Hence, we can establish the connection be-
tween WCR and the differential operator of weight matrices
within the framework of energy functional minimization:

min
F

1

N

N∑
i=1

L (Yi, f (Xi,F )) + λ
N∑
i=1

∥DF ∥1, (9)

where D is the first-order differential operator of the chan-
nel weight matrix. Since we apply regularization to the chan-
nel weight matrix after wavelet decomposition using the gra-
dient of the channel weight matrix itself, no extra memory
footprint is needed to store the results of the wavelet trans-
form. Meanwhile, wavelet analysis retains channels with
crucial edge information of targets, striking a balance be-
tween detection accuracy and model compression efficiency.

Soft Channel Reconstruction
There is a challenge in existing iterative channel prun-
ing approaches (Guo, Yao, and Chen 2016), i.e., valuable
information-rich channels can be prematurely discarded, re-
sulting in reduced accuracy and generalization of the pruned
model. This issue gains prominence when pruning channels
in IRSTD models, given the small target size, which often
implies only a few crucial channels hold vital information.
Prematurely discarding these key channels during pruning
substantially diminishes the pruned model’s accuracy.

While dynamic soft channel pruning methods (He et al.
2018) maintain channel vitality by not entirely discarding
pruned channels, they lack the assurance of finding the
global optimal solution, leading to important channels be-
coming inactive. In the iterative pruning and training process
of IRSTD, we observed that the channels retained as active
after each pruning iteration can be further trained. These
channels offer valuable information until the next pruning
round. Unfortunately, due to short intervals between prun-
ing rounds or insufficient activation, these channels are fre-
quently pruned again, causing the iterative process to stag-
nate. To address this challenge, we propose the SCR method,
which dynamically saves model parameters corresponding
to the best detection accuracy throughout the pruning pro-
cess. Prior to each pruning stage, SCR reconstructs previ-
ously pruned channels in a random manner, effectively re-
activating them. The channels subjected to SCR can be ex-
pressed as follows:

FSCR = αFbest + (1− α)FSC , (10)
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where Fbest is the previously best channel parameters. FSC

represents pruned channel parameters. In SCR, the channel
FSCR after channel soft reconstruction can be regarded as
cosine annealing interpolation between Fbest and FSC . In
this sense, α can be expressed as:

α =
1

2

(
1 + cos

((
1− ∆βSCR

π

)
tepochπ

T
+∆βSCR

))
, (11)

where T denotes the total number of training iterations for
SCR. ∆βSCR represents the interpolation control factor of
SCR. By changing the value of ∆βSCR, the initial value of α
can be empirically controlled between 0 and 1, and it decays
to 0 during the SCR training process. This explains that in
the early stages of SCR, we believe that Fbest needs to have a
certain importance in channel recovery. As the model train-
ing and pruning progress, the sparse model gradually con-
verges, and the current model parameters play an increas-
ingly important role in the SCR process. Thus, the strong
activation effect of SCR on pruned channels is most pro-
nounced in the early stages of pruning, and its effectiveness
gradually decreases as the sparse model converges.

Furthermore, it should be noted that the SCR strategy is
not applied to every pruned channel, as doing so may result
in certain channels with low scores being constantly sup-
pressed under the WCP criterion. To promote the diversity of
the channels, SCR randomly selects a portion of the pruned
channels for channel reconstruction each time and also ap-
plies a cosine decay to the ratio of channels to be recon-
structed, gradually reducing it as the model converges. The
dynamic channel reconstruction rate in SCR can be repre-
sented as: β = β0

2

(
1 + cos

(
tepochπ

T

))
, where β0 is initial

channel reconstruction rate. The scale of random channel re-
construction under a given global sparsity constraint can be
controlled by adjusting β0, so as to find the optimal sparse
model by using SCR.

Experiments
Experimental Details
Dataset. We adopt the NUAA-SIRST (Dai et al. 2021a)
and IRSTD-1k (Zhang et al. 2022c) datasets for evaluation.
NUAA-SIRST consists of 427 infrared images with a total
of 480 infrared targets. IRSTD-1k comprises 1,001 infrared
images, encompassing various target categories. For each
dataset, we divide IR images into three disjoint subsets: 50%
for training, 30% for validation, and 20% for testing.

Evaluation Metrics. The evaluation metrics can be cat-
egorized into two types: objective detection accuracy-based
metrics and model complexity-based metrics. The former in-
cludes pixel-level metrics such as Intersection over Union
(IoU) and Normalized IoU (nIoU) (Dai et al. 2021a), and
object-level metrics such as Probability of Detection (Pd)
and False-Alarm Rate (Fa) (Li et al. 2022a). The latter con-
sists of the number of FLOPs and model parameters.

Implementation Details. We resize the size of each
IR image in NUAA-SIRST and IRSTD-1k datasets to
512×512, following the common practice (Zhang et al.

Method

NUAA-SIRST IRSTD-1k
Pixel-Level Object-Level Pixel-Level Object-Level
IoU↑ nIoU↑ Pd↑ Fa↓ IoU↑ nIoU↑ Pd↑ Fa↓

Top-Hat 1.508 3.084 79.74 16456 10.06 7.438 75.11 1432

Max-Median 6.022 25.35 84.34 774.3 6.998 3.051 65.21 59.73

WSLCM 6.393 28.31 88.74 4462 3.452 0.678 72.44 6619

TLLCM 4.240 12.09 88.37 6243 3.311 0.784 77.39 6738

IPI 1.09 50.23 87.05 30467 27.92 20.46 81.37 16.18

NRAM 13.54 18.95 60.04 25.23 15.25 9.899 70.68 16.93

RIPT 16.79 20.65 69.76 59.33 14.11 8.093 77.55 28.31

PSTNN 30.30 33.67 72.80 48.99 24.57 17.93 71.99 35.26

MSLSTIPT 1.080 0.814 0.052 8.183 11.43 5.932 79.03 1524

IRPruneDet 75.12 74.30 98.61 2.96 64.54 62.71 91.74 16.04

Table 1: Comparison with traditional methods on NUAA-
SIRST and IRSTD-1k in terms of IoU(%), nIoU(%),
Pd(%), and Fa(10

−6).

Method IoU↑ nIoU↑ Pd↑ Fa↓ FLOPs↓ Params↓
U-Net 73.31 70.92 96.15 39.87 1.922 0.5023

+l1-norm 67.18 67.84 86.55 27.34 0.957 0.1887

+WCP 74.25 73.59 96.37 8.94 0.938 0.1802

+l1-norm+SCR 73.51 72.01 93.06 16.45 0.957 0.1887

+WCP+SCR 75.12 74.30 98.61 2.96 0.938 0.1802

Table 2: Ablation study of IRPruneDet.

2022a; Dai et al. 2021b). For the pruning and training pro-
cess, we utilize AdaGrad as the optimizer with a learning
rate of 0.01. The training process lasts for 500 epochs with
a weight decay of 10−4 and a batch size of 16. By de-
fault, we set ∆βSCR to 0.5π and β0 to 1. We apply IR-
PruneDet only to a U-Net18 baseline model and we com-
pare it with representative CNN-based methods: MDvsFA
(Wang, Zhou, and Wang 2019), ACM (Dai et al. 2021a),
ALCNet (Dai et al. 2021b), and FC3-Net (Zhang et al.
2022b), and traditional methods: Top-Hat (Bai and Zhou
2010), Max-Median (Deshpande et al. 1999), WSLCM (Han
et al. 2020), TLLCM (Chen et al. 2013), IPI, NRAM (Zhang
et al. 2018), RIPT (Dai and Wu 2017), PSTNN (Zhang and
Peng 2019), and MSLSTIPT (Sun, Yang, and An 2020).

Ablation Study
To investigate the effectiveness of each component in IR-
PruneDet, we conduct ablation studies on the NUAA-SIRST
dataset. Table 2 shows the results. (1) Impact of WCP. We
apply the commonly used l1-norm criterion instead of the
WCP strategy to measure the importance of channels. The
comparative experiments demonstrate that pruning sparse
models with the l1-norm criterion can obtain erroneous
pruning of channels that encode low but important features,
leading to a decrease in IoU and nIoU despite the com-
pressed model size. (2) Impact of SCR. We control the us-
age of SCR with the same pruning criteria. From the exper-
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Figure 3: Visual results of different IRSTD methods. The boxes in red, yellow, and blue represent correct, missed, and false
detections, respectively. Close-up views are shown in the bottom corners.

imental results, it is observed that SCR effectively recovers
channels that were erroneously pruned early on. This pre-
vents the erroneous pruning of channels containing impor-
tant information, thereby enhancing the model’s accuracy.

U-Net IoU↑ nIoU↑ Pd↑ Fa↓ FLOPs↓ Params↓
+SFP(l1-norm) 67.18 67.84 86.55 27.34 0.957 0.1887

+SFP(l2-norm) 70.71 69.64 90.14 23.55 0.957 0.1887

+FPGM 71.54 70.80 91.47 33.64 1.022 0.1806

+ASFP(l1-norm) 70.82 70.88 90.93 26.33 0.957 0.1887

+ASFP(l2-norm) 71.86 71.9 91.83 21.42 0.957 0.1887

+IRPrune 75.12 74.30 98.61 2.96 0.938 0.1802

Table 3: Comparison with other pruning methods.

Comparisons with Other Pruning Methods
To our knowledge, no lightweight network architecture ex-
ists specifically designed for the IRSTD task. Thus, we com-
pare IRPruneDet with other representative general pruning
methods (He et al. 2018, 2019b,a). We conduct experiments
under the constraint of an equal global sparsity level of 50%
and evaluate the performance based on both target-level and
pixel-level metrics. As shown in Table 3, the results demon-
strate that the pruning technique utilized in developing IR-
PruneDet is more effective for the IRSTD task and outper-
forms other general pruning methods, validating its ability to
compress model size while maintaining detection accuracy.

Quantitative Results
In Table 1 and Table 4, it can be observed that CNN-based
IRSTD models outperform traditional algorithms in both

pixel-level and object-level detection accuracy. However,
CNN-based models have a high computational cost, e.g., the
FLOPs and parameters can reach up to 988.6G and 6.896M,
respectively, resulting in significant storage and computa-
tional overhead. After applying the proposed pruning tech-
nique to the baseline model based on U-net18, we get a
more efficient sparse network IRPruneDet. It owes to the
WCP strategy for channel pruning and SCR for channel
reconstruction, which effectively prevents erroneous chan-
nel pruning during the dynamic pruning process. In terms
of both detection accuracy and model complexity, our IR-
PruneDet outperforms all other methods on the NUAA-
SIRST dataset, achieving an impressive IoU of 75.12% with
only 0.938G FLOPs and 0.1802M parameters.

Visual Results
In Figure 3, we present some visual object segmentation
results of different IRSTD methods. IRPruneDet achieves
superior target shapes and more accurate localization com-
pared to other methods. For example, in the first, second,
third, and fifth test images, our method produces masks that
are closer to the ground truth images compared to other
methods. In the first, fourth, and fifth test images, it can
be observed that our method achieves accurate target lo-
calization and avoids false detections or missed detections
even in complex backgrounds. Besides, IRPruneDet can ef-
fectively capture the edge information of small targets in
infrared images, even in the presence of complex back-
grounds, noise, and clutter interference. In Figure 4, we
demonstrate the channel selection for the downsampling and
upsampling convolutional layers during the pruning process.
From the feature maps generated by different channels, we
can observe that our method discards channels with exces-
sive background noise and missing object edge information,
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Method

NUAA-SIRST IRSTD-1k

FLOPs↓ Params↓Pixel-Level Object-Level Pixel-Level Object-Level
IoU↑ nIoU↑ Pd↑ Fa↓ IoU↑ nIoU↑ Pd↑ Fa↓

MDvsFA 60.30 58.26 89.35 56.35 49.50 47.41 82.11 80.33 998.6 3.919

ACM 72.33 71.43 96.33 9.325 60.97 58.02 90.58 21.78 2.009 0.5198

ALCNet 74.31 73.12 97.34 20.21 62.05 59.58 92.19 31.56 2.127 0.5404

FC3-Net 74.75 73.81 98.13 3.21 64.98 63.59 92.93 15.73 10.57 6.896

IRPruneDet 75.12 74.30 98.61 2.96 64.54 62.71 91.74 16.04 0.9380 0.1802

Table 4: Comparison with CNN-based methods on NUAA-SIRST and IRSTD-1k in terms of IoU(%), nIoU(%), Pd(%),
Fa(10

−6), FLOPs(109), and number of parameters, i.e., Params(106).

1 2 3 4

9

13

10 11 12

14 15 16

1 2 3 4

9 10 11 12

13 14 15 16

5 6 7 8 5 6 7 8(a)

(b)

Figure 4: Above is a visualization of selected feature maps during pruning. The first conv layer of the downsampling process
is shown on the left, and the last conv layer of the upsampling process is shown on the right. Blue boxes denote the channels
selected by the norm-based pruning method (left: channels 4; right: channels 4, 5, 12). Red channels denote the channels selected
by our WCP-based pruning method (left: channels 6; right: channels 6, 8, 9). Yellow boxes denote the channels retained by
both pruning methods (left: channels 1, 5, 11, 13, 16; right: channels 1, 2, 7, 11, 16). (a) Input IR image. (b) Detection result.

such as channel 4 in the downsampling and upsampling pro-
cesses. Furthermore, our method not only considers the re-
sponses in the channels but also emphasizes compelling tar-
get features, such as channels 6, 8, and 9 in the upsampling
process. Although these channels may have small responses,
they contain critical information about the IR targets.

Conclusion
In this paper, we introduce the idea of network pruning to the
IRSTD task and develop a novel and efficient IRPruneDet
model. IRPruneDet implements wavelet sparse regulariza-
tion with the differential operator of the weight matrix,
which efficiently discovers effective sparse structures in a
pruning process without added memory usage. In addition,
during the dynamic pruning process, it incorporates a soft re-
covery mechanism for pruned channels, preventing prema-
ture discarding of channels containing crucial features. Ex-
periments on two public datasets validate that IRPruneDet
significantly cuts FLOPs and parameters while maintaining
or even improving detection accuracy. In future work, it is
worth investigating the integration of the proposed method

into alternative model architectures, such as vision trans-
formers. Additionally, it would be valuable to explore more
effective loss functions to enhance the preservation of useful
edge information during the pruning process.

Acknowledgments

This work is supported in part by the National Natu-
ral Science Foundation of China under Grants 62272363,
62036007, 62061047, 62176195, and U21A20514, the
Young Elite Scientists Sponsorship Program by CAST under
Grant 2021QNRC001, the Youth Talent Promotion Project
of Shaanxi University Science and Technology Association
under Grant 20200103, the Special Project on Technolog-
ical Innovation and Application Development under Grant
No.cstc2020jscx-dxwtB0032, the Chongqing Excellent Sci-
entist Project under Grant No.cstc2021ycjh-bgzxm0339,
and the Joint Laboratory for Innovation in Onboard Comput-
ing and Electronic Technology under Grant 2024KFKT001-
1.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7230



References
Bai, X.; and Zhou, F. 2010. Analysis of new top-hat trans-
formation and the application for infrared dim small target
detection. Pattern Recognition, 43(6): 2145–2156.
Chapple, P. B.; Bertilone, D. C.; Caprari, R. S.; Angeli, S.;
and Newsam, G. N. 1999. Target detection in infrared and
SAR terrain images using a non-Gaussian stochastic model.
In Targets and Backgrounds: Characterization and Repre-
sentation V, volume 3699, 122–132. SPIE.
Chen, C. P.; Li, H.; Wei, Y.; Xia, T.; and Tang, Y. Y. 2013.
A local contrast method for small infrared target detection.
IEEE transactions on geoscience and remote sensing, 52(1):
574–581.
Chui, C. K. 1992. An introduction to wavelets, volume 1.
Academic press.
Cuccurullo, G.; Giordano, L.; Albanese, D.; Cinquanta, L.;
and Di Matteo, M. 2012. Infrared thermography assisted
control for apples microwave drying. Journal of food engi-
neering, 112(4): 319–325.
Dai, Y.; and Wu, Y. 2017. Reweighted infrared patch-tensor
model with both nonlocal and local priors for single-frame
small target detection. IEEE journal of selected topics in ap-
plied earth observations and remote sensing, 10(8): 3752–
3767.
Dai, Y.; Wu, Y.; Zhou, F.; and Barnard, K. 2021a. Asymmet-
ric contextual modulation for infrared small target detection.
In Proceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision, 950–959.
Dai, Y.; Wu, Y.; Zhou, F.; and Barnard, K. 2021b. Atten-
tional local contrast networks for infrared small target detec-
tion. IEEE Transactions on Geoscience and Remote Sens-
ing, 59(11): 9813–9824.
Denton, E. L.; Zaremba, W.; Bruna, J.; LeCun, Y.; and Fer-
gus, R. 2014. Exploiting linear structure within convolu-
tional networks for efficient evaluation. Advances in neural
information processing systems, 27.
Deshpande, S. D.; Er, M. H.; Venkateswarlu, R.; and Chan,
P. 1999. Max-mean and max-median filters for detection
of small targets. In Signal and Data Processing of Small
Targets 1999, volume 3809, 74–83. SPIE.
Ding, X.; Ding, G.; Guo, Y.; Han, J.; and Yan, C. 2019. Ap-
proximated oracle filter pruning for destructive cnn width
optimization. In International Conference on Machine
Learning, 1607–1616. PMLR.
Gao, C.; Meng, D.; Yang, Y.; Wang, Y.; Zhou, X.; and
Hauptmann, A. G. 2013. Infrared patch-image model for
small target detection in a single image. IEEE transactions
on image processing, 22(12): 4996–5009.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2020. Generative adversarial networks. Communications of
the ACM, 63(11): 139–144.
Guo, S.; Wang, Y.; Li, Q.; and Yan, J. 2020. Dmcp: Dif-
ferentiable markov channel pruning for neural networks. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, 1539–1547.

Guo, Y.; Yao, A.; and Chen, Y. 2016. Dynamic network
surgery for efficient dnns. Advances in neural information
processing systems, 29.
Han, J.; Moradi, S.; Faramarzi, I.; Zhang, H.; Zhao, Q.;
Zhang, X.; and Li, N. 2020. Infrared small target detection
based on the weighted strengthened local contrast measure.
IEEE Geoscience and Remote Sensing Letters, 18(9): 1670–
1674.
Han, S.; Pool, J.; Tran, J.; and Dally, W. 2015. Learning
both weights and connections for efficient neural network.
Advances in neural information processing systems, 28.
He, H.; Liu, J.; Pan, Z.; Cai, J.; Zhang, J.; Tao, D.; and
Zhuang, B. 2021. Pruning self-attentions into convolutional
layers in single path. arXiv preprint arXiv:2111.11802.
He, Y.; Dong, X.; Kang, G.; Fu, Y.; Yan, C.; and Yang, Y.
2019a. Asymptotic soft filter pruning for deep convolutional
neural networks. IEEE transactions on cybernetics, 50(8):
3594–3604.
He, Y.; Kang, G.; Dong, X.; Fu, Y.; and Yang, Y. 2018. Soft
filter pruning for accelerating deep convolutional neural net-
works. arXiv preprint arXiv:1808.06866.
He, Y.; Liu, P.; Wang, Z.; Hu, Z.; and Yang, Y. 2019b. Filter
pruning via geometric median for deep convolutional neu-
ral networks acceleration. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
4340–4349.
He, Y.; Liu, P.; Zhu, L.; and Yang, Y. 2022. Filter pruning by
switching to neighboring CNNs with good attributes. IEEE
Transactions on Neural Networks and Learning Systems.
Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531.
Huang, Z.; Shao, W.; Wang, X.; Lin, L.; and Luo, P. 2021.
Rethinking the pruning criteria for convolutional neural net-
work. Advances in Neural Information Processing Systems,
34: 16305–16318.
Kang, M.; and Han, B. 2020. Operation-aware soft channel
pruning using differentiable masks. In International Confer-
ence on Machine Learning, 5122–5131. PMLR.
Law, W.-C.; Xu, Z.; Yong, K.-T.; Liu, X.; Swihart, M. T.;
Seshadri, M.; and Prasad, P. N. 2016. Manganese-doped
near-infrared emitting nanocrystals for in vivo biomedical
imaging. Optics express, 24(16): 17553–17561.
Li, B.; Xiao, C.; Wang, L.; Wang, Y.; Lin, Z.; Li, M.; An,
W.; and Guo, Y. 2022a. Dense nested attention network for
infrared small target detection. IEEE Transactions on Image
Processing.
Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; and Graf, H. P.
2016. Pruning filters for efficient convnets. arXiv preprint
arXiv:1608.08710.
Li, Z.; Meunier, D.; Mollenhauer, M.; and Gretton, A.
2022b. Optimal rates for regularized conditional mean em-
bedding learning. Advances in Neural Information Process-
ing Systems, 35: 4433–4445.
Lin, M.; Ji, R.; Wang, Y.; Zhang, Y.; Zhang, B.; Tian, Y.;
and Shao, L. 2020. Hrank: Filter pruning using high-rank

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7231



feature map. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 1529–1538.
Lin, S.; Ji, R.; Yan, C.; Zhang, B.; Cao, L.; Ye, Q.; Huang,
F.; and Doermann, D. 2019. Towards optimal structured cnn
pruning via generative adversarial learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, 2790–2799.
Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; and Zhang,
C. 2017. Learning efficient convolutional networks through
network slimming. In Proceedings of the IEEE international
conference on computer vision, 2736–2744.
Mallat, S. G. 1989. A theory for multiresolution signal de-
composition: the wavelet representation. IEEE transactions
on pattern analysis and machine intelligence, 11(7): 674–
693.
McIntosh, B.; Venkataramanan, S.; and Mahalanobis, A.
2020. Infrared target detection in cluttered environments by
maximization of a target to clutter ratio (TCR) metric us-
ing a convolutional neural network. IEEE Transactions on
Aerospace and Electronic Systems, 57(1): 485–496.
Rastegari, M.; Ordonez, V.; Redmon, J.; and Farhadi, A.
2016. Xnor-net: Imagenet classification using binary convo-
lutional neural networks. In proceedings of European Con-
ference on ComputerVision, 525–542.
Sui, Y.; Yin, M.; Xie, Y.; Phan, H.; Aliari Zonouz, S.; and
Yuan, B. 2021. Chip: Channel independence-based pruning
for compact neural networks. Advances in Neural Informa-
tion Processing Systems, 34: 24604–24616.
Sun, Y.; Yang, J.; and An, W. 2020. Infrared dim and small
target detection via multiple subspace learning and spatial-
temporal patch-tensor model. IEEE Transactions on Geo-
science and Remote Sensing, 59(5): 3737–3752.
Tang, Y.; Wang, Y.; Xu, Y.; Tao, D.; Xu, C.; Xu, C.; and
Xu, C. 2020. Scop: Scientific control for reliable neural net-
work pruning. Advances in Neural Information Processing
Systems, 33: 10936–10947.
Wang, H.; Zhou, L.; and Wang, L. 2019. Miss detection vs.
false alarm: Adversarial learning for small object segmen-
tation in infrared images. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, 8509–8518.
Wang, Z.; Li, C.; and Wang, X. 2021. Convolutional neu-
ral network pruning with structural redundancy reduction.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 14913–14922.
Zhang, J.; and Tao, D. 2020. Empowering things with in-
telligence: a survey of the progress, challenges, and oppor-
tunities in artificial intelligence of things. IEEE Internet of
Things Journal, 8(10): 7789–7817.
Zhang, L.; Peng, L.; Zhang, T.; Cao, S.; and Peng, Z. 2018.
Infrared small target detection via non-convex rank approx-
imation minimization joint l 2, 1 norm. Remote Sensing,
10(11): 1821.
Zhang, L.; and Peng, Z. 2019. Infrared small target detection
based on partial sum of the tensor nuclear norm. Remote
Sensing, 11(4): 382.

Zhang, M.; Bai, H.; Zhang, J.; Zhang, R.; Wang, C.; Guo, J.;
and Gao, X. 2022a. RKformer: Runge-Kutta Transformer
with Random-Connection Attention for Infrared Small Tar-
get Detection. In Proceedings of the 30th ACM International
Conference on Multimedia, 1730–1738.
Zhang, M.; Yang, H.; Yue, K.; Zhang, X.; Zhu, Y.; and Li, Y.
2023. Thermodynamics-Inspired Multi-Feature Network for
Infrared Small Target Detection. Remote Sensing, 15(19):
4716.
Zhang, M.; Yue, K.; Zhang, J.; Li, Y.; and Gao, X. 2022b.
Exploring Feature Compensation and Cross-level Correla-
tion for Infrared Small Target Detection. In Proceedings
of the 30th ACM International Conference on Multimedia,
1857–1865.
Zhang, M.; Zhang, R.; Yang, Y.; Bai, H.; Zhang, J.; and Guo,
J. 2022c. ISNET: Shape matters for infrared small target
detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 877–886.
Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; and Ye, J. 2023. Object
detection in 20 years: A survey. Proceedings of the IEEE.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7232


