
BilevelPruning: Unified Dynamic and Static Channel Pruning for Convolutional
Neural Networks

Shangqian Gao1, Yanfu Zhang2, Feihu Huang1, Heng Huang3*

1 Electrical and Computer Engineering, University of Pittsburgh
2 Computer Science, College of William and Mary

3 Computer Science, University of Maryland College Park

Abstract

Most existing dynamic or runtime channel pruning meth-
ods have to store all weights to achieve efficient inference,
which brings extra storage costs. Static pruning methods
can reduce storage costs directly, but their performance is
limited by using a fixed sub-network to approximate the orig-
inal model. Most existing pruning works suffer from these
drawbacks because they were designed to only conduct ei-
ther static or dynamic pruning. In this paper, we propose a
novel method to solve both efficiency and storage challenges
via simultaneously conducting dynamic and static channel
pruning for convolutional neural networks. We propose a
new bi-level optimization based model to naturally integrate
the static and dynamic channel pruning. By doing so, our
method enjoys benefits from both sides, and the disadvan-
tages of dynamic and static pruning are reduced. After prun-
ing, we permanently remove redundant parameters and then
finetune the model with dynamic flexibility. Experimental
results on CIFAR-10 and ImageNet datasets suggest that our
method can achieve state-of-the-art performance compared
to existing dynamic and static channel pruning methods.

1. Introduction
Convolutional neural networks (CNNs) have recently
achieved great successes in many machine learning and com-
puter vision tasks [3, 37, 56, 57, 61]. Despite the remarkable
performance, the computational and storage costs of most
CNNs are quite expensive due to their complex architectures.
Such costs have become the major bottleneck to deploying
CNNs on portable devices with limited resources (e.g., mem-
ory, CPU, energy). To solve this problem, many researchers
focus on how to truncate the costs of deep models effectively.
These researches can be summarized into several directions,
such as weight pruning [24], weight quantization [6], struc-

*This work was partially supported by NSF IIS 2347592, 2347604,
2348159, 2348169, DBI 2405416, CCF 2348306, CNS 2347617.

tural pruning [39], matrix decomposition [10] and so on.
Among these approaches, channel pruning, which belongs to
structural pruning, is a promising way to effectively reduce
computational and storage costs since other methods often
require additional post-processing steps to acquire actual
compression. Thus, this work focuses on investigating the
channel pruning technique.

A series of channel pruning approaches [27, 50, 77] use
different criteria to evaluate the importance of each chan-
nel, and the redundant (less important) channels are pruned.
These approaches are also called static channel pruning. The
benefit of static channel pruning is that unessential chan-
nels are permanently removed, which results in savings of
both storage and computational costs. However, the model
capacity of static pruning is restricted by using a fixed sub-
network. Some more recent works [23, 45] try to select
important channels based on inputs and intermediate feature
maps at inference time, and they belong to dynamic chan-
nel pruning. Given different inputs, different sub-networks
are dynamically selected, which largely improves the model
capacity. Most existing dynamic pruning methods preserve
all channels to ensure the model has the largest capacity.
Compared to static pruning, dynamic pruning methods often
achieve better performance but at the cost of requiring extra
storage space.

As mentioned in recent storage efficient dynamic pruning
work [5], the large storage costs of most dynamic pruning
methods prohibit them from being deployed in resource-
limited portable devices. To save storage costs for dynamic
pruning, storage efficient pruning [5] heuristically combines
static and dynamic channel pruning by using reinforcement
learning. The final pruned model is obtained by combin-
ing the outputs of both static and dynamic pruning through
a hand-designed function. Channels with low importance
are permanently removed. Although this approach achieves
good results, there are several drawbacks. First, the sub-
networks from dynamic and static pruning in their method
are treated separately. In their work, static sub-networks are
not considered when conducting dynamic pruning and vice

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

16090

W
高亮

W
下划线



versa, which generally hurts the performance. Moreover,
the learning of position and importance of remaining chan-
nels are also separated. Second, they use a hand-designed
function to fuse dynamic and static pruning results, leading
to sub-optimal performance due to the lack of the learning
process.

To tackle the aforementioned problems, we propose a
new model to integrate static and dynamic pruning. To
naturally form relationships between static and dynamic
sub-networks, we look for the best static sub-network by
evaluating dynamic sub-networks. We then integrate the
learning of static and dynamic sub-networks by using bi-
level optimization. Moreover, the static sub-network is never
evaluated directly, and it’s only implicitly trained through
dynamic sub-networks. Such a setup ensures that dynamic
sub-networks fully utilize their static counterpart. Our new
formulation integrates dynamic and static channel pruning,
leading to a better trade-off between storage costs and dy-
namic flexibility. Specifically, the limited model capacity
in static pruning is compensated by dynamic pruning, and
the extra storage costs in dynamic pruning are also reduced
by static pruning. As a result, our model enjoys the benefits
of both static and dynamic pruning, and their shortcomings
are compensated by each other. The final pruning results are
also learned in an end-to-end fashion without handcrafted
functions.

In our method, the selection of channels for both dy-
namic and static pruning is based on differentiable gates, and
they can be optimized through backpropagation. Under this
setting, we can apply parameter constraints on the static sub-
network and FLOPs constraints on dynamic sub-networks.
Previous dynamic pruning works [5, 45] often require hyper-
parameters to implicitly specify the computational budget
and/or the trade-off between dynamic and static pruning.
But our method can set them directly, which is an additional
benefit of our method.

In summary, the major contributions of our method can
be summarized as follows:
• We propose a novel channel pruning method, which unifies

both dynamic and static pruning. Dynamic and static
sub-networks are connected by evaluating the static sub-
network through dynamic sub-networks instead of training
them in parallel.

• We integrate static and dynamic pruning by formulating
them as a bi-level optimization problem. By doing so,
our method enjoys benefits from both static and dynamic
pruning. In addition, we present an efficient method for
optimizing the matrix-vector product in bi-level optimiza-
tion.

• The experimental results on CIFAR-10 and ImageNet
datasets suggest that our method achieves state-of-the-
art performance compared to existing dynamic and static
pruning methods.

2. Related Works

2.1. Regular Pruning

Weight pruning. Weight pruning aims to eliminate redun-
dant parameters. An early work [67] prunes model weights
based on minimum description length. Optimal brain dam-
age [38] and surgeon [25] utilize second-order information
to remove connections. The drawback is that the computa-
tion of second-order derivatives is expensive. More recently,
Han et al. [24] propose to prune weights based on their mag-
nitude. Magnitude pruning is very efficient, and the cost
of computing L1 or L2 magnitude is negligible. Regular
network pruning approaches follow a three-stage pipeline:
training, pruning, and fine-tuning. Zhang et al. [49] raise
questions about such standard procedure and argue that the
sub-network architecture obtained by pruning is more valu-
able than the remaining weights. They also show that re-
training sub-networks from scratch is enough to recover the
performance. On the other hand, the lottery ticket hypothesis
(LTH) [15] shows that good sub-networks exist at the ini-
tialization stage. A series of works [52, 58] related to LTH
extend this work to larger datasets and more complicated
architectures. Another line of research [55, 76] shows that
training masks on top of untrained models can also lead
to ideal performance. The model after weight pruning has
much fewer parameters but it requires sparse matrix libraries
or specific hardware to achieve actual savings in storage and
computational costs.
Structural Pruning. Structural pruning tries to remove cer-
tain structures in a deep model, such as kernels, channels,
layers, and so on. In contrast to weight pruning, structural
pruning can accelerate inference speed and save storage
costs without additional effort. Filter pruning [39] tries to
prune filters from CNNs that are having small effects on the
outputs. Similar to magnitude pruning, the importance of
each filter is measured by L1 or L2 norm of the filter, and
L1 norm performs better in their settings. Unlike filter prun-
ing, soft filter pruning [28] does not remove filters during
training, and they instead reset these filters and put them
into training again. Network slimming [47] uses L1 sparsity
regularization on scaling factors of channels from batch nor-
malization layers, and channels with small scaling factors
are removed. Other related works [16–22, 33] also added
learnable parameters for different structures. Discrimination-
aware pruning [77] not only considers the norms of chan-
nels but also uses classification loss to identify unimportant
channels. Automatic model compression [29] applies rein-
forcement learning (RL) for structural pruning. RL is used
since it can better cooperate with the discrete nature of struc-
tural pruning. Greedy pruning [70] starts from an empty
model and adds connections that reduce the loss value most.
Static pruning methods directly reduce storage costs, but
the pruned model is fixed leading to limited model capacity.

16091



Alongside progress in vision tasks, Natural Language Pro-
cessing (NLP) has significantly advanced, demonstrated by
key studies [62, 68, 71–75]. Concurrently, structure pruning
is enhancing large model efficiency [66].

2.2. Dynamic Pruning

Regular pruning methods are designed to find a fixed sub-
network for all inputs. On the other hand, dynamic pruning
aims to provide different sub-networks for different inputs,
which increases the model capacity given the same inference
budget. Runtime neural pruning [42] treats dynamic pruning
for different layers as a Markov decision process and uses
reinforcement learning for training. SkipNet [65] uses a
gating module to skip convolution blocks based on previous
feature maps dynamically. The dynamic skipping problem is
formulated as a sequential decision-making problem, which
is jointly solved by reinforcement and supervised learning.
Adaptive neural networks [4] adaptively select the compo-
nents of a deep model based on the input examples. They
also introduce an early exit mechanism to further reduce com-
putational costs. In feature boosting and suppression [23],
they propose to skip unimportant input and output channels
dynamically. They use Lasso regularization to introduce
sparsity on the runtime channel importance. Besides prun-
ing, some works utilize the power of dynamic computation
to improve the design of CNNs. CondConv [69] replace tra-
ditional convolutions with learned specialized convolutional
kernels for each input. Dynamic convolution [7] applies
input-dependent attention on multiple convolution kernels,
which drastically improves the model capacity. Most afore-
mentioned works need to keep the full model to achieve the
best performance. To reduce storage costs, storage efficient
dynamic pruning [5] introduces static pruning along with
dynamic pruning to reduce storage costs.

3. Proposed Method
3.1. Notations

To better illustrate our method, we first introduce some nec-
essary notations. In a CNN, the feature map of i-th layer
can be represented by Fi ∈ RB×Ci×Wi×Hi , i = 1, . . . , L,
where B is the mini-batch size, Ci is the number of channels,
Wi and Hi are the width and height of the current feature
map, L is the number of layers. ⊙ is the element-wise prod-
uct. We use σ(x) = 1

1+e−x to represent the sigmoid function.
⌊·⌉ is used to represent rounding to the nearest integer.

3.2. Static and Dynamic Settings

For static pruning, we can use a 0-1 vector to indicate
whether to prune a channel or not. To produce such vec-
tors, we use the following function:

gs = ⌊vs⌉, vs = σ((θs + µ)/τ), (1)

where gs ∈ RCi is the static pruning vector, µ ∼
Gumbel(0, 1), τ is the temperature hyper-parameter, and
θs ∈ RCi are learnable parameters for static pruning. vs is a
continuous vector, we further round it to its nearest neighbor
gs. The rounding function is not differentiable, we solve
this problem by using the straight-through estimator [2] to
calculate gradients. Now we have the binary vector gs for
static pruning. The generation of gs can be seen as using the
straight-through Gumbel-sigmoid [34] trick to approximate
Bernoulli distribution.

We can use similar formulations for dynamic pruning and
consider feature maps from the i− 1th layer. The detailed
formulation can be written as:

gd = ⌊vd⌉, vd = σ((h(Fi−1; θd) + µ)/τ), (2)

where gd ∈ RB×Ci is the dynamic pruning vector, and
h(·; θd) is a routing function parameterized by θd to dynami-
cally select channels, the rest settings are the same as static
pruning. The routing function h(·; θd) is composed with
global average pooling followed by squeeze and excitation
(SE) [31], which is suggested by FBS [23]. By using SE,
we can save parameters when some layers in a model is too
wide (like later layers of MobileNet-V2).

After we have gs, the resulting feature map obtained by
static pruning can be represented as:

F̃i = gs ⊙Fi (3)

where F̃i is the pruned feature map by applying gs, and gs
is first expanded to have the same dimension of Fi. After
having F̃i, we can regard it as the new base feature map, and
apply dynamic pruning on it:

F̂i = gd ⊙ F̃i. (4)

where F̂i is the dynamically pruned feature map, gd is also
first expanded to have the same dimension of F̃i and con-
duct element-wise product. We can then remove channels
from Wi based on F̂i. One can also use a more sophisti-
cated method to specify the relationships between static and
dynamic pruning. For example, one can directly multiply
gs along with the output dimension of the weight matrix
θd of the routing function. However, we found that such
modifications do not provide any benefits.

3.3. Unified Dynamic and Static Pruning

Since all operations of static and dynamic pruning are dif-
ferentiable, we can formulate the static pruning problem as
follows:

min
Θs

L(f(x; Θs,Θd), y) + λRp(Tp(Θs), ppT̂p), (5)

where Θs is the collection of all learnable parameters θs for
static pruning, T̂p is the number of all prunable parameters,

16092



... 

Loss 
Functions

Kept Channels

Static Pruned Channels

Dynamic Pruned Channels

Feature Maps 𝓕𝒊 Static Pruned Maps

Previous Feature 
Maps 𝓕𝒊−𝟏

Dynamic Pruned 
Maps 𝓕𝒊−𝟏

Static Pruning
Vector 𝒈𝒔

... 

... 
... 

𝒉(⋅, 𝜽𝒅)

... 

Dynamic Pruning
Vectors 𝒈𝒅

Figure 1. The flowchart of the proposed method. In the figure, we first conduct static pruning followed by dynamic pruning. Instead of
naively combining static pruning and dynamic pruning, we formulate the pruning problem as a bi-level optimization problem to unify static
and dynamic pruning. The whole process is differentiable, which allows efficient gradient based optimization.

Tp(Θs) is the remained number of parameters decided by
the static sub-network, Rp is the regularization term to re-
duce the number of parameters to a predefined threshold
pp, x, y are input samples and their labels, f(·; Θs,Θd) is
a sub-network from the whole network and it is parame-
terized by Θs and Θd, and L is the cross-entropy loss for
classification. We omit the model weights W , since we fix
W in f(·; Θs,Θd) during the pruning stage. Similarly, the
dynamic pruning problem can be defined as:

min
Θd

L(f(x; Θs,Θd), y)+λRr(Tr(Θd), prT̂r)+γRd(vd),

(6)
where Θd is the collection of all θd, T̂r is the total prunable
FLOPs of the model, Tr(Θd) is the average FLOPs of B
dynamic sub-networks, Rr is the regularization term to push
average FLOPs of dynamic sub-networks to the correspond-
ing threshold pr, γ is the hyper-parameter for Rd, and Rd is
a regularization term to prevent dynamic sub-networks from
collapsing to a single trivial solution. We define Rd(vd) as
follows:

Rd(vd) =
1

L

L∑
i=1

∥vid − v̄id∥−1
2 , (7)

where vid is the continuous dynamic vector of ith layer, and
v̄id = 1

B

∑
vid is the average of dynamic vectors from the

current layer. We use continuous vid instead of discrete gid.
Because the variance of gid could be very small for early
layers (also pointed out in [69]), which results in instability
and difficulty when optimizing Eq. 7.

To reduce the number of hyper-parameters, we use the
same λ for both Rr and Rp. Given the objective function in
Eq. 4 and Eq. 5, we can see that the static sub-network is not
directly evaluated, and it is used as the new backbone model
for dynamic pruning.

We have the objective functions to conduct static and
dynamic pruning; a natural question is how to train them

together? We can simply put Eq. 5 and Eq. 6 together and
optimize them using gradient descent. However, such a
process will make the training of static and dynamic pruning
interfere with each other, which will hurt the pruning result
(shown in supplementary materials). Alternatively, we can
optimize Eq. 5 and Eq. 6 iteratively, but doing so can not
integrate static and dynamic pruning, and training of static
and dynamic pruning are separated.

To unify the training of dynamic and static sub-networks,
we can consider the following bi-level optimization [8] prob-
lem:

min
Θd

L(f(x; Θ∗
s,Θd), y) + λRr(Tr(Θd), prT̂r) + γRd(vd)

s.t. Θ∗
s = argminΘs

L(f(x; Θs,Θd), y) + λRp(Tp(Θs), ppT̂p),

(8)

where the outer problem is to find good dynamic sub-
networks based on the optimal static sub-network, and the
inner problem is getting the optimal static sub-network. The
formulation of the problem in Eq. 8 also appeared in gradient-
based hyperparameter optimization [1, 14] and differentiable
neural architecture search [44].

The inner problem in Eq. 8 is not easy to solve since
how to generate dynamic sub-networks without learning is
unclear. Naive random sampling of dynamic sub-networks
only produces trivial results. We then approximate Θ∗

s by
training one step, and it has been proven effective in pre-
vious works [1, 44]. Multi-step approximation can also be
used, but it will dramatically increase the computational
costs since one has to perform backpropagation through mul-
tiple time steps. As a result, we chose to use the one-step
approximation. To simplify notations, we use L(Θs,Θd) =
L(f(x; Θs,Θd), y) for the following derivations. Let us first
define the update rule u for Θs: Θ

′

s = u(Θs, η), and η is the
learning rate. Take SGD as an example, the update rule of Θs

is Θ
′

s = u(Θs, η) = Θs − η(∇Θs
L(Θs,Θd) + λ∇Θs

Rp).

16093



We then approximate Θ∗
s with Θ

′

s, and the gradient with
respect to Θd is:

∇Θd
L(Θ∗

s,Θd) + λ∇Θd
Rr + γ∇Θd

Rd

≈ ∇Θd
L(Θs − η(∇Θs

L(Θs,Θd) + λ∇Θs
Rp),Θd)

+ λ∇Θd
Rr + γ∇Θd

Rd

= ∇Θd
L(Θ′

s,Θd)− η∇2
Θd,Θs

L(Θs,Θd)∇Θ′
s
L(Θ′

s,Θd)

+ λ∇Θd
Rr + γ∇Θd

Rd.

(9)

where the last equality is obtained by applying the chain
rule. Note that, we use Θ

′

s to approximate Θ∗
s , and the

second line of Eq. 9 is an approximated solution instead of an
analytical solution. At first glance, the final gradient contains
a costly matrix-vector product. However, we will show that
the second-order derivative is just the multiplication of two
first-order terms. Let’s take a specific layer i as an example,
we first rearrange Eq. 3 and Eq. 4: F̂i = gi ⊙ Fi, and
gi = gis ⊙ gid, we have:

∇2
θi
d,θ

i
s
L(θis, θid) =∇θi

d
(∇giL(θis, θid)∇θi

s
gi)

=∇θi
d
(∇giL(θis, θid)((∇θi

s
gis)⊙ gid))

=∇giL(θis, θid)(∇θi
s
gis · ∇θi

d
gid).

(10)

To simplify derivation, θid is flattened as a vector, and we
omit all transpose notations. The result of Eq. 10 indicates
that the second-order term is just the multiplication of two
Jacobians matrices followed by ∇giL(θis, θid), which is more
efficient than using finite difference approximation for the
matrix-vector product [44, 60]. The calculation of the Jaco-
bians matrix is also simple since the computation of gis and
gid only includes simple operations like matrix multiplica-
tions and element-wise functions. With Eq. 9 and Eq, 10, we
always update Θd by taking Θs into consideration, which is
ignored in storage efficient pruning [5]. The calculation of
the Jacobians matrix is listed in the supplementary materi-
als. In practice, we use the Adam optimizer [35] instead of
SGD. The derivation of gradients w.r.t Θd given the Adam
optimizer is also provided in the supplementary materials.

3.4. The Overall Algorithm

We follow the three-stage procedure of regular pruning meth-
ods: training, pruning, and fine-tuning. During pruning, Θs

and Θd are learned; pruned Θd and W are trained during fine-
tuning. After we obtain static and dynamic sub-networks
by solving the problem in Eq. 8, we permanently remove
channels with 0 in gs, which also saves costs for fine-tuning.
As a result, only a static sub-network that is important to
dynamic sub-networks is persevered for finetuning. The rest
parts of the model are removed to achieve the goal of saving
memory costs. The corresponding channels in the dynamic

Algorithm 1: Unified Dynamic and Static Channel
Pruning

Input: dataset for pruning: Dprune; remained rate of
FLOPs and parameters: pr and pp; hyper-parameter:
λ and γ; training epochs for pruning: Eprune;
pre-trained CNN: f .

Initialization: initialize Θd randomly; initialize Θs

uniformly; freeze W in f .
for e := 1 to Eprune do

for a mini-batch (x, y) in Dprune do
1. produce static and dynamic vectors: gs and
gd. (Eq. 1 and 2)

2. calculate gradients w.r.t Θs from Eq. 5.
3. update Θs by Adam optimizer.
4. calculate gradients w.r.t Θd (Eq. 9 and

Eq. 10).
5. update Θd by Adam optimizer.

end
end
Get f ′ by pruning f based on gs.
Return f ′ for fine-tuning.

routing function h(·) are also removed. The fine-tuning loss
can be written as:

min
Θd,W

L(f ′(x; Θd,W), y)+λRr(Tr(Θd), prT̂r)+γRd(vd),

(11)
where f ′ is the pruned model with around ppT̂p parame-
ters. Here, we abuse notations Θd and W to represent
weights after static pruning, and they are different from
the original weights. We only modify the feature maps
during fine-tuning, which takes advantage of mini-batch
training. During the evaluation, we dynamically prune the
channels. For both pruning and fine-tuning, we choose
Rr(x, y) = Rp(x, y) = log(max(x, y)/y). Typically, reg-
ular regression loss functions, like MAE and MSE, can be
used for Rr and Rp, but they can hardly achieve target val-
ues for some architectures like MobileNet-V2. We insert gs
and gd after the Conv-Bn-ReLU block and before the next
convolution layer for pruning, which can accurately reflect
the pruned model. The overall algorithm of our method is
provided in Alg. 1. The whole process of our method is
summarized in Fig. 1.

4. Experiments
4.1. Settings

In the experiment section, we call our method UDSP
(Unified Dynamic and Static channel Pruning). We use
CIFAR-10 [36] and ImageNet [9] to verify the performance
of our method, as most previous pruning works use these
datasets.

16094



Method Architectures Dynamic Base Acc Acc ∆-Acc ↓FLOPs ↓ #Params
FBS [23]

CifarNet

✓ 91.37% 89.88% -1.49% 74.6% -11.0%
SEP-A [5] ✓ 92.07% 91.23% -0.84% 74.5% 22.0%
SEP-B [5] ✓ 92.07% 91.42% -0.65% 74.5% -31.0%

UDSP (ours) ✓ 92.36% 91.89% -0.47% 75.1% 20.1%
AMC [29]

ResNet-56

✗ 92.80% 91.90% -0.90% 50.0% -
FPGM [30] ✗ 93.59% 92.93% -0.66% 52.6% -
HRank [43] ✗ 93.26% 93.17% -0.21% 50.6% 42.4%
DSA [53] ✗ 93.13% 92.91% -0.22% 52.2% -
SEP [5] ✓ 93.12% 93.44% +0.32% 50.0% 19.8%

UDSP (ours) ✓ 93.12% 93.78% +0.66% 50.1% 20.0%

Table 1. Comparison of the accuracy changes (∆-Acc), reduction in FLOPs, and the number of parameters of various channel pruning
algorithms on CIFAR-10. ‘+/-’ of ∆-Acc indicates increase/decrease compared to baselines. ‘-’ in ‘↓ #Params’ indicates increase of
parameters.

On CIFAR-10, we use CifarNet following several dy-
namic pruning works [5, 23]. Besides CifarNet, we also test
our method on ResNet-56. For ImageNet, we evaluate our
method on ResNets [26] and MobileNet-V2 [59]. pp and pr
are used to decide how much FLOPs and parameters to be
pruned. Detailed settings of pp and pr are provided in the
supplementary materials. λ and γ in Eq. 5 and Eq. 6 are set
to 2.0 and 0.1 separately for all models and datasets. τ in
Eq. 1 and Eq. 2 is set to 0.4. Other implementation details
are given in the supplementary materials.

4.2. CIFAR-10 Results

We present CIFAR-10 results in Tab. 1. For CifarNet, all
comparison methods are dynamic. From Tab. 1, we can see
that our method can outperform other comparison methods
with similar pruned FLOPs. Compared to FBS, our method
saves 27.9% of parameters (79.9% vs. 111% #Params com-
pared to the original model) while achieving 1.02% improve-
ments with ∆-Acc. SEP-A has similar parameter savings as
our method, but the ∆-Acc is 0.37% lower than our method.
SEP-B keeps all channels, and our method still outperforms
it by 0.18% with ∆-Acc. Moreover, our method only uses
60.9% parameters of SEP-B.

We compare our method with both static and dynamic
pruning methods on ResNet-56. All comparison methods re-
duce around 50% FLOPs. Our approach has similar pruning
rates of FLOPs and parameters as SEP, but our method per-
forms better than SEP by 0.34%. HRank achieves the best
performance among static pruning methods. Static pruning
methods prune more parameters compared to dynamic prun-
ing methods, but the performance of our method is 0.87%
higher than HRank in terms of ∆-Acc. In summary, our
method achieves a better trade-off between storage costs and
performance than SEP [5].

4.3. ImageNet Results

On the ImageNet dataset, we use ResNet-18, ResNet-34,
ResNet-50, and MobileNet-V2 to evaluate the performance
of different methods. All results are shown in Tab. 2. The

results of other comparison baselines are directly adapted
from their original paper following the common practice.

ResNet-18. For static pruning methods, DSA [53]
achieves the best performance. The ∆ Top-1 accuracy of
our method is 0.83% higher than DSA, and our method
prunes 10.2% more FLOPs. This result suggests that dy-
namic pruning still has advantages when the model capacity
is reduced to some extent. FBS and CGNN use additional
parameters for dynamic pruning. Our method outperforms
FBS and CGNN by 2.26% and 0.79% in terms of ∆ Top-1
accuracy separately. In addition, our method prunes 11.5%
more FLOPs than CGNN and saves 20% of parameters. Fi-
nally, our method is better than SEP by 0.75% in terms of
∆ Top-1 accuracy, while both methods prune similar FLOPs
and parameters.

ResNet-34. IE [51] performs better than other static
pruning methods, but it prunes less FLOPs and parameters.
Our method has similar parameters and performance as IE,
but we can prune 27.7% more FLOPs than IE. Our method
saves 20% parameters and performs better than CGNN by
0.71% in terms of ∆ Top-1 accuracy, and both methods
prune similar FLOPs.

ResNet-50. For ResNet-50, We compare several recent
state-of-the-art pruning methods. Our method outperforms
ResRe by 0.54% and 0.50% in terms of Top-1 and ∆ Top-1
accuracy. The gap between other methods and our method is
more obvious. 3DP explores pruning in 3 dimensions, which
allows a more flexible trade-off. Our method is better than
3DP by 0.61% regarding Top-1 accuracy, indicating that
our method can achieve similar flexibility. In addition, our
method prunes most FLOPs, and we can also reduce storage
costs to some extent (25.0% reduction). DepGrah and DTP
are recently proposed static pruning methods, our UDSP still
has a clear advantage when it comes to these baselines.

MobileNet-V2. AMC, MetaPruning and MobileNet-V2
0.75 all remove around 30% FLOPs. MetaPruning achieves
the lowest accuracy lost. Our method prunes around 6%
more FLOPs than MetaPruning, and performs better (0.52%
and 0.44% higher with Top-1 and ∆ Top-1 accuracy). Our

16095



Method Architectures Dynamic Pruned Top-1 ∆ Top-1 ↓ FLOPs ↓ #Params
AMC [29]

ResNet-18

✗ 66.63% -3.13% 50.0% 24.0%
FPGM [30] ✗ 68.41% -1.87% 41.5% 28.0%
DSA [53] ✗ 68.61% -1.11% 40.0% -
FBS [23] ✓ 68.17% -2.54% 49.5% -12.0%

CGNN [32] ✓ 67.95% -1.07% 38.7% -
SEP [5] ✓ 68.73% -1.03% 48.5% 19.0%

FTWT [12] ✓ 67.49% -2.27% 51.6% -
UDSP (ours) ✓ 69.48% -0.28% 50.2% 20.0%

SFP [28]

ResNet-34

✗ 71.84% -2.09% 41.1% -
FPGM [30] ✗ 72.63% -1.29% 41.5% 28.9%

IE [51] ✗ 72.83% -0.48% 22.3% 21.1%
CGNN [32] ✓ 72.40% -1.10% 50.4% -
FTWT [12] ✓ 72.17% -1.13% 47.4% -

UDSP (ours) ✓ 72.91% -0.39% 50.0% 20.0%
SCOP [63]

ResNet-50

✗ 75.26% -0.89% 54.6% 51.8%
GFP [46] ✗ 76.42% -0.37% 51.0% 55.8%
3DP [64] ✗ 75.90% -0.25% 53.0% 50.0%

ResRe [11] ✗ 75.97% -0.12% 56.1% -
DepGraph [13] ✗ 75.97% -0.12% 51.18% -

DTP [41] ✗ 75.55% -0.58% 56.7% -
UDSP (ours) ✓ 76.51% +0.38% 58.4% 25.0%

MobileNet-V2 0.75 [59]

MobileNet-V2

✗ 69.80% -2.00% 30.0% 24.8%
AMC [29] ✗ 70.80% -1.10% 30.0% 17.2%

MetaPruning [48] ✗ 71.20% -0.60% 30.9% -
GSS [70] ✗ 71.20% -0.80% 36.0% 22.9%

UDSP (ours) ✓ 71.72% -0.16% 36.6% 15.3%

Table 2. Comparison of the accuracy changes (∆ Top-1), reduction in FLOPs, and the number of parameters of various channel pruning
algorithms on ImageNet.

(a) Loss (b) Accuracy (c) Impact of γ (d) Impact of pp

Figure 2. (a,b): Comparison of loss and accuracy given different training settings. Mean and variance are provided by running the experiment
3 times. (c) Impact of γ during the pruning process. (d) Impact of ps during the pruning process. All results are obtained with ResNet-56 on
CIFAR-10.

Bi-level Acc ∆-Acc ↓ FLOPs ↓ #Params
✗ 93.55% +0.43% 50.0% 20.3%
✓ 93.78% +0.66% 50.1% 20.0%

Table 3. Comparisons between different pruning settings of our
algorithm on ResNet-56 for the CIFAR-10 dataset.

Settings Base Acc Acc ∆-Acc ↓FLOPs ↓ #Params
UDSP1 93.12% 93.32% +0.20% 50.0% 40.0%
UDSP2 93.12% 93.64% +0.52% 50.1% 30.0%
UDSP3 93.12% 93.78% +0.66% 50.1% 20.0%

Table 4. Comparisons given different pruning rates for #Params
with ResNet-56 on CIFAR-10.

method and GSS prune a similar amount of FLOPs, and
the ∆ Top-1 accuracy of our method is higher than GSS by

0.64%. In addition to FLOPs reduction, our method can also
remove around 15.3% of parameters.

In summary, our method provides a larger model capacity
compared to static pruning methods, and the storage costs
are reduced compared to dynamic pruning methods. More-
over, our method achieves a better trade-off between storage
costs and performance than SEP, indicating that integrating
dynamic and static pruning is important for pruning.

4.4. Analysis of Different Settings

To understand different design choices and hyper-parameter
settings, we provide additional analysis in this section. In
Fig. 2(a,b), we plot the loss value and model accuracy given

16096



(a) Rp Loss (b) Rr Loss (c) Accuracy

Figure 3. The regularization losses and model accuracy given different choices of λ. Mean and variance are provided by running the
experiment 3 times.

(a) CifarNet (b) ResNet-56

Figure 4. The resulting architectures of ResNet-56 and CifarNet on
CIFAR-10 with our method. We plot the probability of using each
channel, and the probability is calculated on the whole test dataset.
Channels with dashed lines are permanently removed.

Figure 5. ResNet-50 on ImageNet dataset.

different pruning settings. We can see that bi-level optimiza-
tion outperforms iterative training with both accuracy and
loss values, which suggests that integrating dynamic and
static pruning is beneficial. We also show the difference
between the finetuned model in Tab. 3, and we can draw
similar conclusions.

In Fig. 2(c), we provide the accuracy after pruning (before
fine-tuning) given different γ. A too-large γ usually hurts
the performance, and γ around 0.1 provides relatively good
results.

In Fig. 2(d), we fix pr = 0.5 and plot the accuracy after
pruning given different percentages of remaining parameters
(pp). We can see that the performance does not decrease
a lot when we keep more than 75% of parameters. We
further present results when pruning more parameters af-

ter finetuning in Tab 4. When pruning 30% of parameters
(UDSP2), the performance of our method does not decrease
too much. However, there is a large performance drop when
pruning 40% of parameters. Under this setting (UDSP1), the
parameter reduction of our method is similar to the static
pruned model from HRank, and the dynamic flexibility is
largely restricted. These observations suggest that, under the
same FLOPs pruning rate, our method can maintain a good
trade-off between dynamic flexibility and storage costs until
the pruning rate for parameters is similar to static pruning
methods.

In Fig. 3, we plot the value of regularization losses and
model accuracy given different choices of λ. From the figure,
it can be seen that our method is robust to different choices
of λ. A lower λ can lead to a little better final performance,
but the difference is small.

In Fig. 4, we plot the final architectures of ResNet-56
and CifarNet for our method. Our method tends to preserve
more channels when the width of the original model changes.
Later layers often have more dynamic flexibility, probably
because they are less penalized by the FLOPs constraint Rr.
This figure also suggests that our method does not collapse
into a single static solution.

We plot the Top-1 accuracy vs. FLOPs in Fig. 5. Besides
baselines introduced in Tab. 2, we also include Random
Pruning [40] in the figure. In the figure, it is clear that our
method has the best FLOPs vs. Accuracy trade-off.

5. Conclusion
In this paper, we study the problem of how to integrate dy-
namic and static pruning. We explicitly formulate the static
and dynamic pruning problems as a new bi-level optimiza-
tion task such that two types of models can complement each
other. We further improve the efficiency of the cost matrix-
vector product in the bi-level pruning problem. The superior
performance of our method on CIFAR-10 and ImageNet
datasets suggests that our method is a promising solution for
integrating dynamic and static channel pruning.

16097



References
[1] Atilim Gunes Baydin, Robert Cornish, David Martinez Rubio,

Mark Schmidt, and Frank Wood. Online learning rate adapta-
tion with hypergradient descent. In International Conference
on Learning Representations, 2018. 4

[2] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Es-
timating or propagating gradients through stochastic neurons
for conditional computation. arXiv preprint arXiv:1308.3432,
2013. 3

[3] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski,
Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D
Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al.
End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016. 1

[4] Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh
Saligrama. Adaptive neural networks for efficient inference.
In International Conference on Machine Learning, pages
527–536. PMLR, 2017. 3

[5] Jianda Chen, Shangyu Chen, and Sinno Jialin Pan. Storage ef-
ficient and dynamic flexible runtime channel pruning via deep
reinforcement learning. In Advances in Neural Information
Processing Systems, pages 14747–14758. Curran Associates,
Inc., 2020. 1, 2, 3, 5, 6, 7

[6] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Wein-
berger, and Yixin Chen. Compressing neural networks with
the hashing trick. In International conference on machine
learning, pages 2285–2294, 2015. 1

[7] Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen,
Lu Yuan, and Zicheng Liu. Dynamic convolution: Attention
over convolution kernels. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 11030–11039, 2020. 3

[8] Benoı̂t Colson, Patrice Marcotte, and Gilles Savard. An
overview of bilevel optimization. Annals of operations re-
search, 153(1):235–256, 2007. 4

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 248–255. Ieee, 2009. 5

[10] Misha Denil, Babak Shakibi, Laurent Dinh, Marc' Aurelio
Ranzato, and Nando de Freitas. Predicting parameters in
deep learning. In Advances in Neural Information Processing
Systems, 2013. 1

[11] Xiaohan Ding, Tianxiang Hao, Jianchao Tan, Ji Liu, Jungong
Han, Yuchen Guo, and Guiguang Ding. Resrep: Lossless
cnn pruning via decoupling remembering and forgetting. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 4510–4520, 2021. 7

[12] Sara Elkerdawy, Mostafa Elhoushi, Hong Zhang, and Nilan-
jan Ray. Fire together wire together: A dynamic pruning
approach with self-supervised mask prediction. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2022. 7

[13] Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and
Xinchao Wang. Depgraph: Towards any structural pruning.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 16091–16101, 2023. 7

[14] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo
Grazzi, and Massimiliano Pontil. Bilevel programming for
hyperparameter optimization and meta-learning. In Interna-
tional Conference on Machine Learning, pages 1568–1577.
PMLR, 2018. 4

[15] Jonathan Frankle and Michael Carbin. The lottery ticket
hypothesis: Finding sparse, trainable neural networks. In
International Conference on Learning Representations, 2019.
2

[16] Alireza Ganjdanesh*, Shangqian Gao*, and Heng Huang.
Interpretations steered network pruning via amortized inferred
saliency maps. In European Conference on Computer Vision,
pages 278–296. Springer, 2022. 2

[17] Alireza Ganjdanesh, Shangqian Gao, and Heng Huang. Eff-
conv: efficient learning of kernel sizes for convolution layers
of cnns. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 7604–7612, 2023.

[18] Alireza Ganjdanesh*, Shangqian Gao*, Hirad Alipanah, and
Heng Huang. Compressing image-to-image translation gans
using local density structures on their learned manifold. Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
2024.

[19] Shangqian Gao, Feihu Huang, Jian Pei, and Heng Huang.
Discrete model compression with resource constraint for deep
neural networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1899–
1908, 2020.

[20] Shangqian Gao, Feihu Huang, Yanfu Zhang, and Heng Huang.
Disentangled differentiable network pruning. In European
Conference on Computer Vision, pages 328–345. Springer,
2022.

[21] Shangqian Gao, Burak Uzkent, Yilin Shen, Heng Huang, and
Hongxia Jin. Learning to jointly share and prune weights for
grounding based vision and language models. In The Eleventh
International Conference on Learning Representations, 2023.

[22] Shangqian Gao, Zeyu Zhang, Yanfu Zhang, Feihu Huang,
and Heng Huang. Structural alignment for network prun-
ing through partial regularization. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 17402–17412, 2023. 2

[23] Xitong Gao, Yiren Zhao, Łukasz Dudziak, Robert Mullins,
and Cheng zhong Xu. Dynamic channel pruning: Feature
boosting and suppression. In International Conference on
Learning Representations, 2019. 1, 3, 6, 7

[24] Song Han, Jeff Pool, John Tran, and William Dally. Learning
both weights and connections for efficient neural network. In
Advances in neural information processing systems, pages
1135–1143, 2015. 1, 2

[25] Babak Hassibi and David G Stork. Second order deriva-
tives for network pruning: Optimal brain surgeon. Morgan
Kaufmann, 1993. 2

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 6

[27] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning
for accelerating very deep neural networks. In Proceedings

16098



of the IEEE International Conference on Computer Vision,
pages 1389–1397, 2017. 1

[28] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and
Yi Yang. Soft filter pruning for accelerating deep convolu-
tional neural networks. In International Joint Conference on
Artificial Intelligence (IJCAI), pages 2234–2240, 2018. 2, 7

[29] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and
Song Han. Amc: Automl for model compression and accel-
eration on mobile devices. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 784–800,
2018. 2, 6, 7

[30] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang.
Filter pruning via geometric median for deep convolutional
neural networks acceleration. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4340–4349, 2019. 6, 7

[31] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation
networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7132–7141, 2018. 3

[32] Weizhe Hua, Yuan Zhou, Christopher M De Sa, Zhiru Zhang,
and G. Edward Suh. Channel gating neural networks. In
Advances in Neural Information Processing Systems. Curran
Associates, Inc., 2019. 7

[33] Zehao Huang and Naiyan Wang. Data-driven sparse structure
selection for deep neural networks. In Proceedings of the
European conference on computer vision (ECCV), pages 304–
320, 2018. 2

[34] Eric Jang, Shixiang Gu, and Ben Poole. Categorical
reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016. 3

[35] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5, 1

[36] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical report, Citeseer,
2009. 5

[37] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-
agenet classification with deep convolutional neural networks.
In Advances in neural information processing systems, pages
1097–1105, 2012. 1

[38] Yann LeCun, John S Denker, and Sara A Solla. Optimal
brain damage. In Advances in neural information processing
systems, pages 598–605, 1990. 2

[39] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. ICLR,
2017. 1, 2

[40] Yawei Li, Kamil Adamczewski, Wen Li, Shuhang Gu, Radu
Timofte, and Luc Van Gool. Revisiting random channel
pruning for neural network compression. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 191–201, 2022. 8

[41] Yunqiang Li, Jan C van Gemert, Torsten Hoefler, Bert
Moons, Evangelos Eleftheriou, and Bram-Ernst Verhoef. Dif-
ferentiable transportation pruning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 16957–16967, 2023. 7

[42] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neu-
ral pruning. In Advances in Neural Information Processing
Systems. Curran Associates, Inc., 2017. 3

[43] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang,
Baochang Zhang, Yonghong Tian, and Ling Shao. Hrank:
Filter pruning using high-rank feature map. The IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR),
2020. 6

[44] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
Differentiable architecture search. In International Confer-
ence on Learning Representations, 2019. 4, 5

[45] Liu Liu, Lei Deng, Xing Hu, Maohua Zhu, Guoqi Li, Yufei
Ding, and Yuan Xie. Dynamic sparse graph for efficient deep
learning. In International Conference on Learning Represen-
tations, 2019. 1, 2

[46] Liyang Liu, Shilong Zhang, Zhanghui Kuang, Aojun Zhou,
Jing-Hao Xue, Xinjiang Wang, Yimin Chen, Wenming Yang,
Qingmin Liao, and Wayne Zhang. Group fisher pruning for
practical network compression. In International Conference
on Machine Learning, pages 7021–7032. PMLR, 2021. 7

[47] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning efficient
convolutional networks through network slimming. In ICCV,
2017. 2

[48] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin
Yang, Kwang-Ting Cheng, and Jian Sun. Metapruning: Meta
learning for automatic neural network channel pruning. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 3296–3305, 2019. 7

[49] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and
Trevor Darrell. Rethinking the value of network pruning. In
International Conference on Learning Representations, 2019.
2

[50] Jian-Hao Luo, Hao Zhang, Hong-Yu Zhou, Chen-Wei Xie,
Jianxin Wu, and Weiyao Lin. Thinet: pruning cnn filters
for a thinner net. IEEE transactions on pattern analysis and
machine intelligence, 2018. 1

[51] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio,
and Jan Kautz. Importance estimation for neural network
pruning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 11264–11272, 2019.
6, 7

[52] Ari Morcos, Haonan Yu, Michela Paganini, and Yuandong
Tian. One ticket to win them all: generalizing lottery ticket
initializations across datasets and optimizers. In Advances in
Neural Information Processing Systems 32, pages 4932–4942.
Curran Associates, Inc., 2019. 2

[53] Xuefei Ning, Tianchen Zhao, Wenshuo Li, Peng Lei, Yu
Wang, and Huazhong Yang. Dsa: More efficient budgeted
pruning via differentiable sparsity allocation. Proceedings of
the European Conference on Computer Vision (ECCV), 2020.
6, 7

[54] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems, pages
8024–8035, 2019. 1

16099



[55] Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi,
Ali Farhadi, and Mohammad Rastegari. What’s hidden in
a randomly weighted neural network? In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11893–11902, 2020. 2

[56] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016. 1

[57] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information pro-
cessing systems, pages 91–99, 2015. 1

[58] Alex Renda, Jonathan Frankle, and Michael Carbin. Compar-
ing rewinding and fine-tuning in neural network pruning. In
International Conference on Learning Representations, 2020.
2

[59] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4510–4520, 2018. 6, 7, 1

[60] Zebang Shen, Alejandro Ribeiro, Hamed Hassani, Hui Qian,
and Chao Mi. Hessian aided policy gradient. In International
Conference on Machine Learning, pages 5729–5738. PMLR,
2019. 5

[61] Karen Simonyan and Andrew Zisserman. Two-stream con-
volutional networks for action recognition in videos. In Ad-
vances in neural information processing systems, pages 568–
576, 2014. 1

[62] Hannah Smith, Zeyu Zhang, John Culnan, and Peter Jansen.
ScienceExamCER: A high-density fine-grained science-
domain corpus for common entity recognition. In Proceedings
of the Twelfth Language Resources and Evaluation Confer-
ence, pages 4529–4546, Marseille, France, 2020. European
Language Resources Association. 3

[63] Yehui Tang, Yunhe Wang, Yixing Xu, Dacheng Tao, Chunjing
Xu, Chao Xu, and Chang Xu. Scop: Scientific control for reli-
able neural network pruning. Advances in Neural Information
Processing Systems, 33, 2020. 7

[64] Wenxiao Wang, Minghao Chen, Shuai Zhao, Long Chen,
Jinming Hu, Haifeng Liu, Deng Cai, Xiaofei He, and Wei Liu.
Accelerate cnns from three dimensions: A comprehensive
pruning framework. In International Conference on Machine
Learning, pages 10717–10726. PMLR, 2021. 7

[65] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E
Gonzalez. Skipnet: Learning dynamic routing in convolu-
tional networks. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 409–424, 2018. 3

[66] Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured
pruning of large language models. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 6151–6162, Online, 2020. Asso-
ciation for Computational Linguistics. 3

[67] Andreas S Weigend, David E Rumelhart, and Bernardo A
Huberman. Generalization by weight-elimination with ap-
plication to forecasting. In Advances in neural information
processing systems, pages 875–882, 1991. 2

[68] Dongfang Xu, Zeyu Zhang, and Steven Bethard. A generate-
and-rank framework with semantic type regularization for
biomedical concept normalization. In Proceedings of the
58th Annual Meeting of the Association for Computational
Linguistics, pages 8452–8464, Online, 2020. Association for
Computational Linguistics. 3

[69] Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan
Ngiam. Condconv: Conditionally parameterized convolu-
tions for efficient inference. NeurIPS, 2019. 3, 4

[70] Mao Ye, Chengyue Gong, Lizhen Nie, Denny Zhou, Adam
Klivans, and Qiang Liu. Good subnetworks provably exist:
Pruning via greedy forward selection. International Confer-
ence on Machine Learning, 2020. 2, 7

[71] Zeyu Zhang and Steven Bethard. Improving toponym res-
olution with better candidate generation, transformer-based
reranking, and two-stage resolution. In Proceedings of the
12th Joint Conference on Lexical and Computational Seman-
tics (*SEM 2023), pages 48–60, Toronto, Canada, 2023. As-
sociation for Computational Linguistics. 3

[72] Zeyu Zhang, Thuy Vu, and Alessandro Moschitti. Joint mod-
els for answer verification in question answering systems.
In Proceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1:
Long Papers), pages 3252–3262, Online, 2021. Association
for Computational Linguistics.

[73] Zeyu Zhang, Thuy Vu, Sunil Gandhi, Ankit Chadha, and
Alessandro Moschitti. Wdrass: A web-scale dataset for docu-
ment retrieval and answer sentence selection. In Proceedings
of the 31st ACM International Conference on Information &
Knowledge Management, page 4707–4711, New York, NY,
USA, 2022. Association for Computing Machinery.

[74] Zeyu Zhang, Thuy Vu, and Alessandro Moschitti. In situ
answer sentence selection at web-scale. arXiv preprint
arXiv:2201.05984, 2022.

[75] Zeyu Zhang, Thuy Vu, and Alessandro Moschitti. Double
retrieval and ranking for accurate question answering. In
Findings of the Association for Computational Linguistics:
EACL 2023, pages 1751–1762, Dubrovnik, Croatia, 2023.
Association for Computational Linguistics. 3

[76] Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski.
Deconstructing lottery tickets: Zeros, signs, and the super-
mask. In Advances in Neural Information Processing Systems,
2019. 2

[77] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,
Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui Zhu.
Discrimination-aware channel pruning for deep neural net-
works. In Advances in Neural Information Processing Sys-
tems, pages 875–886, 2018. 1, 2

16100


