
Structural Alignment for Network Pruning through Partial Regularization

Shangqian Gao1, Zeyu Zhang2, Yanfu Zhang1, Feihu Huang1, and Heng Huang*3

1Department of Electrical and Computer Engineering, University of Pittsburgh
2School of Information, University of Arizona

3Department of Computer Science, University of Maryland at College Park
{shg84, yaz91}@pitt.edu, zeyuzhang@email.arizona.edu, huangfeihu2018@gmail.com,

heng@umd.edu

Abstract

In this paper, we propose a novel channel pruning
method to reduce the computational and storage costs of
Convolutional Neural Networks (CNNs). Many existing
one-shot pruning methods directly remove redundant struc-
tures, which brings a huge gap between the model before
and after network pruning. This gap will no doubt result
in performance loss for network pruning. To mitigate this
gap, we first learn a target sub-network during the model
training process, and then we use this sub-network to guide
the learning of model weights through partial regulariza-
tion. The target sub-network is learned and produced by
using an architecture generator, and it can be optimized ef-
ficiently. In addition, we also derive the proximal gradi-
ent for our proposed partial regularization to facilitate the
structural alignment process. With these designs, the gap
between the pruned model and the sub-network is reduced,
thus improving the pruning performance. Empirical re-
sults also suggest that the sub-network found by our method
has a much higher performance than the one-shot pruning
setting. Extensive experiments show that our method can
achieve state-of-the-art performances on CIFAR-10 and Im-
ageNet with ResNets and MobileNet-V2.

1. Introduction
Convolutional Neural Networks (CNNs) have achieved

many successes in different computer vision tasks [27, 46,
47, 50, 2, 6, 11]. To tackle real-world challenges, re-
cent CNNs [27, 51, 14] become larger and larger regard-
ing width, depth, etc. With such capacities, CNNs can ob-
tain better performance on different benchmarks at the cost

*Corresponding author. This work was partially supported by NSF
IIS 1838627, 1837956, 1956002, 2211492, CNS 2213701, CCF 2217003,
DBI 2225775.

of computational and storage burdens. At the same time,
with the recent developments of mobile and embedded de-
vices, the demand for deploying CNNs on these devices has
increased dramatically. However, there is a natural con-
flict between the size of CNNs and the hardware capabil-
ity of these devices. To overcome these challenges, many
works [13, 12] try to reduce the size of CNNs, and make
them possible to be deployed on edge devices.

There are many directions to reduce the size of CNNs.
Among them, weight pruning and structural pruning are
two popular topics. Structural pruning, especially channel
pruning, is more friendly to hardware than weight pruning
since no post-processing steps are required to acquire sav-
ings in computational and storage costs. Thus, our paper
focuses on channel pruning for CNNs. Many existing one-
shot pruning works [44, 56, 9, 42, 17, 8] prune trained mod-
els directly. No matter what method is used, there will be
a significant gap between the selected sub-network and the
pruned model. Such a gap creates difficulties in regaining
performance during the fine-tuning process. On the other
hand, soft pruning methods [16, 23] softly remove struc-
tures during the training process, which can produce good
results with a shorter fine-tuning process. However, soft
pruning methods generally perform worse than typical one-
shot pruning methods, probably because the weight space is
restricted during the training process because of soft prun-
ing.

To tackle the above problems, we introduce a novel par-
tial regularization technique to align model weights and the
discovered sub-network during the training process, which
can produce a high performance sub-network and reduce
the gap between the sub-network and the original model.
In addition, unlike soft-pruning methods, all model struc-
tures are used for training. The partial regularization term
contains a partial group lasso regularization on selected
weights, and other weights remain intact without modifica-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

17402

86187
下划线

86187
高亮

86187
下划线

86187
下划线

tions. An architecture generator is trained to select which
weights should be aligned, and it is also updated during
the training process. Our partial regularization formulation
is related to partial regularization in lasso [40]. Inspired
by the nonmonotone proximal gradient (NPG) method used
in [40], we also use a proximal gradient method to solve the
partial regularization problem in our setting. Note that our
method dynamically changes which channels should be put
in the partial regularization. As a result, we add a scalar to
balance the regularization strength for different layers be-
cause the number of pruned channels is different for them.
To maximally keep the capacity of the original model, we
insert the partial regularization in the middle of the training
process. This is because weights are vulnerable to prun-
ing at the early training stage, and the FLOPs regularization
will dominate updates of the architecture generator, which
can create bad sub-networks and mislead the training pro-
cess. Finally, we update model weights and the architecture
generator periodically, and they are connected by the par-
tial regularization term during training. To maintain simi-
lar training efficiency as the original model, we only use a
small portion of samples to train the architecture generator.
Thus, there is only a small overhead compared to the orig-
inal training process. Our method successfully finds per-
formant sub-networks from the original model with these
techniques. In summary, the contributions of this paper can
be summarized as follows:

1) We propose to align the sub-network in the original
model with the final pruned model through partial
regularization. By structural alignment, the gap be-
tween the selected sub-network and the pruned model
is largely reduced, which naturally improves the per-
formance of the pruned model.

2) We use an architecture generator parameterized by
neural networks to select the proper sub-network struc-
ture and guide the partial regularization. Inspired by
partial regularization in lasso [40], we propose to solve
the partial regularization problem via proximal gradi-
ents, which facilitate the alignment process.

3) Empirical results show that the sub-network discov-
ered by our method performs much better than the
one-shot pruning setting. Extensive experiments on
CIFAR-10 and ImageNet show that our method outper-
forms existing channel pruning methods on ResNets
and MobileNet-V2.

2. Related Works
Weight-Level Pruning. Weight pruning removes re-

dundant connections based on individual weights. High
compression rates can be achieved by weight pruning, but
they can not directly achieve acceleration, and specially de-
signed sparse matrix libraries are required. One of the early

works [13] proposes to measure the importance of weights
with their L1 or L2 magnitude, and unimportant weights
are removed. Instead of magnitude, SNIP [28] updates the
importance of each weight by using gradients from the loss
function. SNIP can be used at the initialization time. The
assumption of the Lottery ticket hypothesis [7] suggests that
there exist sparse sub-networks (winning tickets) that can
achieve the performance of the full model. In addition, with
repeated training and fine-tuning, it can achieve better re-
sults. On the other hand, rethinking network pruning [39]
argues that the learned topology from pruning algorithms is
the key to achieving better performance. In addition, weight
rewinding [48] shows that resetting weights to values from
the middle training process can also produce good results.
Similar to weight rewinding, our method does not modify
weight training at the beginning, the partial regularization
is inserted in the middle training process.

Structural-Level Pruning. Different from weight prun-
ing, structural pruning is more friendly to hardware since
it requires little or no post-processing steps to achieve ac-
celeration. Similar to weight pruning, one of the early
structural pruning methods [29] measure the importance
of filters by using the sum of the absolute value of kernel
weights. Besides using the magnitude to measure chan-
nel or filter importance, other methods utilize the scaling
factor of batchnorm [21] to indicate which channels are
important because batchnorm [21] is popular for the de-
sign of recent CNNs [14, 49]. To prune channels, Liu et
al. [37] apply the sparse regularization to the scaling fac-
tors of batchnorm, and the channel will be pruned if the
corresponding scaling factor is small. Structure sparse se-
lection [20] introduces scaling factor to specific structures,
such as neurons, groups, or residual blocks, and the sparsity
regularization is applied to these structures. Structures with
small values will also be removed. Another line of research
formulates channel pruning as a constrained optimization
problem [24, 56, 9, 23, 59], and learnable parameters are
used to control each channel. These parameters are end-
to-end differentiable, which is amenable to gradient based
optimization methods. Our method is also related to these
researches. Different from these methods, the learning of
sub-networks accomplishes the training of model weights
in our method. In addition, we use partial regularization to
promote the selected sub-network, which reduces the gap
between the pruned model and the sub-network. Besides
using gates, Automatic Model Compression (AMC) [17]
uses policy gradient to update the policy network. This pol-
icy network is then used to decide the left width of each
layer. Collaborative channel pruning [44] prunes channels
by exploiting inter-channel dependency. Greedy forward
selection [55] starts from an empty network and greedily
adds Important channels from the full model. MetaPrun-
ing [38, 32] uses a hypernet to generate parameters for sub-

17403

86187
高亮

… … ……… ……

…

… ……… …… …

𝒍th layer full model

𝒍th layer sub-network𝑪𝒍

𝑪
𝒍+
𝟏

𝟏st layer full model 𝑳th layer full model

m
in
𝒲
ℒ
+
𝛾
ℛ
𝑤

Partial Regularization

m
in
Θ
ℒ
+
𝜆
ℛ
𝐹
𝐿
𝑂
𝑃
𝑠

Generate the sub-network via AGN

Path for training
model weights

Path for training
the AGN

Figure 1: Overview of the proposed method. The AGN generates the sub-network to guide the partial regularization during
the training process of model weights. The AGN is trained by evaluating sub-networks on a sub-set from the whole dataset.
Both model weights and AGN are trained in an end-to-end differentiable manner.

networks, and evolutionary algorithms are utilized to find
the best sub-networks. MetaPruning shows that pruning
should accomplish trained model weights.

Besides these pruning methods, regularization based
pruning methods can also be applied to structural pruning.
Previous works [54, 31] use group sparsity to prune differ-
ent structures. In addition to structural sparsity, structural
sharing is considered in other works [58, 10]. Our method
relates to regularization based methods; however, the for-
mulation of our partial regularization only aligns selected
channels dynamically, and other weights are intact.

Other Related Works. Besides the above-mentioned
methods, there are works from other perspectives, includ-
ing bayesian pruning [41, 43], weight quantization [4, 45],
and knowledge distillation [19].

3. Proposed Method
3.1. Overview

Before introducing our method, we first describe nota-
tions and provide an overview of our method. In a CNN,
the feature map of lth layer can be represented by Fl ∈
ℜCl×Wl×Hl , l = 1, . . . , L, where Cl is the number of chan-
nels, Hl and Wl are height and width of the current feature
map, L is the number of layers. Similarly, the weights of
lth layer can be written as Wl ∈ ℜCl×Cl−1×kl×kl , and kl is
the kernel size of this layer. The mini-batch dimension of
feature maps is ignored to simplify notations.

The core motivation of our proposed method is to reduce
the gap between the selected sub-network from the origi-

nal model and the pruned model. To achieve this goal, we
need two processes. First, we need to choose the desired
sub-network from the original model, and this sub-network
should also be updated when model weights are trained dur-
ing the learning process. Secondly, we use the sub-network
to guide the partial regularization term, which is used to
decide which weights should be regularized. In addition,
partial regularization should not be fixed to accommodate
the changes in the selected sub-network.

3.2. Learning the Sub-network

We use an Architecture Generator Network (AGN) to
generate the desired sub-network architecture v ∈ {0, 1}N ,
where 0 or 1 is used to depict the removal or keep of a chan-
nel, and N is the total number of channels from all layers.
The large parameterization space of AGN can facilitate the
learning of sub-network structures. To generate v, the fol-
lowing equation is used:

 \label {eq1} \begin {aligned} \mathbf {v} &= \textrm {AGN}(\Theta), \end {aligned} (1)

and AGN is composed of gated recurrent unit (GRU) [3]
and dense layers. In addition, Gumbel-Sigmoid [22] with
STE [1] are used to produce the final binary vector v, and
they are placed after the output of dense layers. More details
of AGN are provided in the supplementary materials.

Once we have v, we can apply it to the feature maps to
produce a sub-network. The feature map of the lth layer is
then modified as follows: \label {eq2} \widehat {\mathcal {F}}_{l} = \mathbf {v}_l \odot \mathcal {F}_{l}, (2)

17404

86187
下划线

86187
下划线

86187
备注
AGN通过训练学习数据集中的特征和模式，自动发现并生成一个性能优越的子网络结构。这个子网络结构保留了对完成特定任务最重要的特征和通道，同时去除那些对最终性能影响较小的通道。

where ⊙ is element-wise multiplication, vl is the architec-
ture vector of lth layer, and vl is resized to have the same
size of Fl. The feature map Fl is from the output of the
activation function. The overall loss function for generating
the desired sub-network is as follows:

 \label {eq3} \begin {aligned} \underset {\Theta }{\min }\ \mathcal {J}_{\theta }(\Theta):= \mathcal L\big ({f}(x;\mathcal {W}, \mathbf {v}),y\big) + \lambda \mathcal {R}_{\text {FLOPs}}(T(\mathbf {v}), p T_{\textrm {total}}) \\ \end {aligned}

(3)
where T (v) is the current FLOPs decided by the vector v,
Ttotal is the total FLOPs of the original model, p ∈ (0, 1] is a
hyperparameter deciding the remaining fraction of FLOPs,
λ is the hyper-parameter controlling the strength of FLOPs
regularization, f(x;W,v) is a CNN parameterized by W
and the sub-network structure is determined by the archi-
tecture vector v, L is the task loss function and RFLOPs is
the regularization term for FLOPs. The regularization term
RFLOPs is RFLOPs(x, y) = log(max(x, y)/y). With Eq. 3,
we can find promising sub-networks when training the AGN
and model weights periodically.

3.3. Partial Regularization

Given a sub-network v obtained from AGN, we can then
reduce the gap between the sub-network and the pruned
model and thus increase its performance. We can formu-
late the optimization problem with partial regularization as
follows:

 ~\label {eq4} \min _{\mathcal {W}}\ \mathcal {J}_{w}(\mathcal {W}):= \mathcal L\big ({f}(x;\mathcal {W}),y\big) + \gamma \mathcal {R}_{w}(\mathcal {W}),

 (4)

where Rw is the partial regularization term, and γ controls
the strength of the partial regularization. Rw has the fol-
lowing form:

 ~\label {eq5} {R}_{w}(\mathcal {W}) = \sum _{l=1}^{L} \sum _{i\in S_l} \frac {\hat {N}_l}{\hat {N}}\|{\mathcal {W}_l}_{[i,:,:,:]}\|_{\text {GL}},

 (5)

where N̂l =
∑

1−vl, N̂ =
∑

1−v and Sl = {i | if vl[i] =
0}. Sl contains the indices of pruned channels which are
decided by AGN. N̂l

N̂
is a scalar to adjust the regulariza-

tion strength given different layers. The numerator N̂l is
the number of pruned channels of the lth layer, and the de-
nominator N̂ is the number of pruned channels from all
layers. It is easy to see that

∑L
l=1

N̂l

N̂
= 1. ∥x∥GL is the

norm of grouped weights for Group Lasso, and ∥x∥GL =√∑|x|
i=1 x

2
i where |x| represents the number of elements in

x. In Eq. 5, we assume the corresponding layer is pruned
across the output dimension. If it is pruned across the input
dimension, we have

∑
i∈Sl

∥Wl[:,i,:,:]∥GL.
The goal of using Group Lasso for our partial regulariza-

tion is to reduce the distance between the dense model and
the pruned model, other suitable functions may also be use-
ful, but we found that the partial regularization with Group

Algorithm 1: Structural Alignment for Network
Pruning

Input: D, DAGN ,p, λ, γ, E, Estart,
Initialization: initialize W and θ.
for e := 1 to E do

/* Optimizing model weights. Freeze
Θ of the AGN. */

for a mini-batch (x, y) in D do
1. calculate the gradients w.r.t model weights:
∇WL.

2. update model weights using any stochastic
optimizer.

3. if if e ≥ Estart then
generate v from the AGN by using Eq. 1.
apply the proximal gradient step following

Eq. 8.
end
/* Optimizing Θ of the AGN. Freeze

model weights W. */
if if e ≥ Estart then

for a mini-batch (x, y) in DAGN do
1. generate v from the AGN by using Eq. 1

and apply it to the model.
2. calculate gradients w.r.t to J in Eq. 3:
∇ΘJθ

3. update the AGN with ADAM
end

end
Pruning the model with resulting v, and fine-tuning it.

Lasso already produces good results. Another benefit of the
partial regularization Rw is that it will not penalize weights
that are not pruned. By doing so, we can avoid the problem
of overpenalizing all weights’ magnitude. In addition, v is
updated during the training process, and Rw will dynami-
cally regularize weights. As a result, v can flexibly change
instead of falling into a fixed sub-network during the opti-
mization process.

3.4. Proximal Gradients for Partial Regularization

Eq. 5 has a similar formulation of the partial regulariza-
tion of lasso [40]. In [40], the related optimization prob-
lem is solved via a nonmonotone proximal gradient (NPG)
method. However, NPG requires frequent evaluation of the
loss function to ensure the loss value after proximal gra-
dients is less or equal to the loss value before the update.
With CNNs, the costs of NPG are too large due to frequent
loss evaluations. As a result, we use a one-step proximal
gradient update to solve the problem defined in Eq. 4.

The proximal operator of Rw is defined as:

 ~\label {eq6} \text {prox}_{\gamma \mathcal {R}_{w}}(x) = \underset {y}{\arg \min }\
\gamma \mathcal {R}_{w}(y) + \frac {1}{2}\|x-y\|^2.

 (6)

In Eq. 6, ∥x− y∥2 defines the sum of the square difference

17405

86187
下划线

86187
下划线

between x and y. We denote model weights after tth update
as Wt, and Wt+1 can be obtained by:

 ~\label {eq7} \mathcal {W}^{t+1} = \text {prox}_{\alpha ^{t+1}\gamma \mathcal {R}_{w}}(u(\mathcal {W}^{t},\alpha ^{t+1})),
 (7)

where u(Wt, αt+1) is an update rule that can be applied
for many algorithms, and αt+1 is the learning rate at the
current step. Take SGD as an example, u(Wt, αt+1) =
Wt−αt+1∇WtL. With Eq. 6 and Eq. 7, model weights W
can then be updated with proximal gradients.

We now present the analytical solution to Eq. 6, so that
model weights can be efficiently updated. From the struc-
ture of Rw, we know that channels with indices i ∈ Sl will
be regularized. This is equivalent to not regularizing chan-
nels if i ̸∈ Sl. Consequently, we have the following form of
the proximal gradient operator:

 ~\label {eq8} \text {prox}_{\alpha \gamma \mathcal {R}_{w}}(\mathcal {W}_l)= \begin {cases} \frac {{\mathcal {W}_l}_{[i,:,:,:]}}{\|(1-\mathbf {v}_l)\odot \mathcal {W}_l\|_2}\max \Big (0, -{\frac {\hat {N}_l}{\hat {N}}}\alpha \gamma \\ \quad +\|(1-\mathbf {v}_l)\odot \mathcal {W}_l\|_2 \Big),\ \text {if}\ i \in S_l,\\ {\mathcal {W}_l}_{[i,:,:,:]},\ \text {if}\ i \not \in S_l. \end {cases}

(8)

In Eq. 8, we omit the step notation t to simplify the nota-
tions, and we still assume Wl is pruned along the output di-
mension. In this equation, it is easier to see that N̂l

N̂
can bal-

ance the regularization strength given different layers. Due
to the property of our proposed partial regularization, the
term ∥(1− vl)⊙Wl∥2 also changes dynamically, since N̂l

is changed after updates of the AGN. As a result, if no ad-
justment is applied, no matter how large or small N̂l is, only
a constant value 1

Lαγ will be used for the soft-thresholding,
max(0, ∥(1 − vl) ⊙ Wl∥2 − 1

Lαγ), in all circumstances,
which is not reasonable. To accompany the changes of vl,
and consequently N̂l, we use N̂l

N̂
to dynamically balance the

soft-thresholding parameter between different layers. With
Eq. 8, we can efficiently update W with our proposed par-
tial regularization.

3.5. Network Pruning via Structural Alignment

We present the algorithm of our method in Algorithm. 1.
In Algorithm. 1, D is the training dataset; DAGN is a sub-
dataset within D and it is used to train AGN; p decides how
much FLOPs is preserved and it described in section 3.2; γ
and λ are hyperparameters to control the strength of RFLOPs
and Rw; E is the total number of epochs; Estart is the start
epoch to train AGN and apply Rw when optimizing model
weights. Note that, to reduce the overhead brought by train-
ing AGN, we only use a small sub-set sampled from D.
As we discussed in section 1, we need to set a start epoch
for AGN and Rw. If we apply Rw when training starts
(Estart = 0), it will largely restrict the final performance of
the whole model before pruning. Instead, we can have de-
served results if we start partial regularization in the middle
of the training process. The reason for this problem can

come from several perspectives. For example, at the begin-
ning of the training, the classification loss can not produce
accurate guidance for pruning since weights are not trained
properly. Consequently, it will produce a bad sub-network,
and following this sub-network only gives even worse re-
sults.

We summarize our method in Fig. 1. The inference path
when training model weights and the AGN are different,
and they are connected by partial regularization, which is
different from current one-shot pruning and soft pruning
methods. With this design, model weights are not directly
affected by the sub-network architecture, which creates a
smooth transition for the selected sub-network before and
after pruning.

4. Experiments
4.1. Settings

We use CIFAR-10 [26] and ImageNet [5] to evaluate
the performance of our method. Our method requires one
hyper-parameter p to control the FLOPs budget. The de-
tailed choices of p are listed in supplementary materials.
We choose ResNets [14] and MobileNet-V2 [49] for com-
parison. For CIFAR-10, we compare our method with other
methods on ResNet-56 and MobileNetV2. For ImageNet,
we select ResNet-34, ResNet-50, ResNet-101, and Mo-
bileNetV2 as our target models.

We set λ in Eq. 3 to 4.0 for all models and datasets. Sim-
ilarly, we set γ to 0.0005 for all settings. We set Estart at
20% of the total training epochs. Detailed numbers of Estart
are listed in supplementary materials. The range of Estart is
quite large, which is hard to be explored thoroughly. The
current setting already provides good results, but better set-
tings may also exist. To reduce the training costs of the
AGN, we random sample 5% of samples from the original
dataset for constructing DAGN. With this setup, the addi-
tional costs are less than 5% of the original training costs.
We train the parameters Θ of the AGN using ADAM [25]
with a start learning rate 0.001. Besides the training of the
AGN, we follow the standard training recipe of ResNets for
both CIFAR-10 and ImageNet. For MobileNet-V2, We fol-
low the training settings in their original paper [49]. After
training, we prune the model by using the sub-network gen-
erated from the AGN. The fine-tuning settings are similar
to the training setting. Due to space limitations, details of
training and fine-tuning are also presented in supplemen-
tary materials. In the experimental section, our method is
abbreviated as SANP: Structural Alignment for Network
Pruning.

4.2. CIFAR-10 Results

The results of CIFAR-10 are presented in Tab. 1. For
ResNet-56, our method achieves the best performance (in
terms of ∆-Acc) compared to other methods. Specifically,

17406

86187
备注
是基于当前权重Wt和学习率α^t+1的更新规则，通常可以是梯度下降的一步。这个公式表示，新的权重Wt+1是通过应用近端算子到梯度下降的更新结果上得到的。

86187
下划线

86187
下划线

86187
备注
因为原始模型并不是一个预训练模型。并且AGN生成的子网络是基于原始模型在训练过程中学习到的特征。如果原始模型在训练过程中能够学习到丰富且有用的特征表示，那么AGN基于这些特征生成的子网络更有可能保持较高的性能。

Table 1: Comparison of results on CIFAR-10. ∆-Acc represents the performance changes relative to the baseline, and +/−
indicates an increase/decrease, respectively.

Architecture Method Baseline Acc Pruned Acc ∆-Acc Pruned FLOPs

ResNet-56

DCP-Adapt [60] 93.80% 93.81% +0.01% 47.0%
SCP [23] 93.69% 93.23% −0.46% 51.5%

FPGM [18] 93.59% 92.93% −0.66% 52.6%
SFP [16] 93.59% 92.26% −1.33% 52.6%
FPC [15] 93.59% 93.24% −0.25% 52.9%

HRank [35] 93.26% 92.17% −0.09% 50.0%
DMC [9] 93.62% 92.69% +0.07% 50.0%

GNN-RL [57] 93.49% 93.59% +0.10% 54.0%
SANP (ours) 93.49% 93.81% + 0.32% 52.0%

MobileNetV2

Uniform [60] 94.47% 94.17% −0.30% 26.0%
DCP [60] 94.47% 94.69% +0.22% 26.0%
DMC [9] 94.23% 94.49% +0.26% 40.0%

SCOP [53] 94.48% 94.24% −0.24% 40.3%
SANP (ours) 94.52% 94.97% +0.45% 46.0%

(a) ResNet-56. (b) MoibleNet-V2.

Figure 2: (a) and (b): the average norm of channels with or without partial regularization for ResNet-56 and MobileNet-V2.

our method outperforms the second best method GNN-RL
by 0.22% regarding ∆-Acc (SANP +0.32% vs. GNN-RL
+0.10%) when pruning similar FLOPs (SANP 52.0% vs.
GNN-RL 54.0%). Our method also outperforms HRank
and DMC by 0.25% and 0.41% separately (DMC +0.07%
and HRank −0.09%). The gap between other methods and
our method is even larger. For MobileNet-V2, our method
prunes most FLOPs (46.0%) and achieves the best perfor-
mance (∆-Acc: +0.45%). Compared to the second best
method, DMC, our method prunes 6% more FLOPs and
outperforms it by 0.19%. SCOP also prunes 40% FLOPs,
and the gap between our method and SCOP is even larger
(0.69% better in terms of ∆-Acc). The uniform setting and
DCP prunes around 26% FLOPs, but the performance is
still worse than our method.

4.3. ImageNet Results

All results for the ImageNet dataset are shown in Tab. 2.
ResNet-34. Our method achieves 73.43% Top-1 accuracy
and 91.48% Top-5 accuracy, which is better than the base-
line by 0.19% and 0.16% for Top-1/Top-5 accuracy sep-
arately. At the same time, our method removes 44.1%
FLOPs, which is on par with other methods. It is obvious

(a) (b)

Figure 3: Top-1 and Top-5 accuracy after pruning given dif-
ferent settings.

that the advantage of our method is clear compared to other
methods. Our method prunes similar FLOPs to SCOP and
DMC. However, the ∆ Top-1 Acc of our method is 0.88%
and 0.92% better than SCOP and DMC, respectively, and
we have similar observations for ∆ Top-5 Acc (0.60% and
0.47% better than SCOP and DMC). Taylor has the second
best ∆ Top-1 Acc, but the pruned FLOPs is much lower
than our method (ours: 44.1% vs. Taylor: 24.2%). The ad-
vantage of our method compared to FPGM is more obvious.
ResNet-50. Our method achieves 76.47% Top-1 accuracy
and 93.00% Top-5 accuracy, which is also better than the

17407

Table 2: Comparison results on ImageNet with ResNet-34/50/101 and MobileNet-V2.

Architecture Method Baseline Top-1 Acc Baseline Top-5 Acc ∆ Top-1 Acc ∆ Top-5 Acc Pruned FLOPs

ResNet-34

FPGM [18] 73.92% 91.62% −1.29% −0.54% 41.1%
Taylor [42] 73.31% - −0.48% - 24.2%
DMC [9] 73.30% 91.42% −0.73% −0.31% 43.4%

SCOP [53] 73.31% 91.42% −0.69% −0.44% 44.8%
SANP (ours) 73.24% 91.32% +0.19% +0.16% 44.1%

ResNet-50

DCP [60] 76.01% 92.93% −1.06% −0.61% 55.6%
CCP [44] 76.15% 92.87% −0.94% −0.45% 54.1%

FPGM [18] 76.15% 92.87% −1.32% −0.55% 53.5%
ABCP [36] 76.01% 92.96% −2.15% −1.27% 54.3%
DMC [9] 76.15% 92.87% −0.80% −0.38% 55.0%

SCOP [53] 76.15% 92.87% −0.89% −0.34% 54.6%
PFP [34] 76.13% 92.86% −0.92% −0.45% 44.0%

CHIP [52] 76.15% 92.87% +0.00% +0.04% 48.7%
NPPM [8] 76.15% 92.87% −0.19% +0.12% 56.0%

Random-Pruning [30] 75.83% 92.92% −0.75% −0.40% 51.0%
GNN-RL [57] 76.10% - −1.82% − 53.0%
SANP (ours) 76.06% 92.86% + 0.41% + 0.17% 56.2%

ResNet-101

FPGM [18] 77.37% 93.56% −0.05% 0.00% 41.1%
Taylor [42] 77.37% - −0.02% - 39.8%
DMC [9] 77.37% 93.56% +0.04% +0.03% 56.0%
PFP [34] 77.37% 93.56% −0.94% −0.44% 45.1%

SANP (ours) 77.53% 93.71% + 0.61% + 0.29% 55.4%

MobileNet-V2

Uniform [49] 71.80% 91.00% −2.00% −1.40% 30.0%
AMC [17] 71.80% - −1.00% - 30.0%
CC [33] 71.88% - −0.97% - 28.3%

MetaPruning [38] 72.00% - −0.80% - 30.7%
Random-Pruning [30] 71.88% - −1.01% - 29.1%

SANP (ours) 71.91% 90.30% + 0.14% + 0.07% 29.1%

Settings Architecture Baseline Top-1 Acc ∆ Top-1 Acc Pruned FLOPs
One-Shot ResNet-34 73.31% −0.50% 44.0%

SANP 73.24% +0.19% 44.1%
One-Shot ResNet-50 76.13% −0.57% 56.0%

SANP 76.06% +0.41% 55.2%
One-Shot MobileNetV2 71.88% −0.42% 29.3%

SANP 71.91% +0.07% 29.1%

Table 3: Performance of pruned models given different
pruning settings on ImageNet.

baseline Top-1/Top-5 accuracy. The second best method,
CHIP, removes 48.7% FLOPs while maintaining the origi-
nal performance. Our method outperforms CHIP by 0.41%
in terms of the ∆ Top-1 accuracy while pruning near 8%
more FLOPs. NPPM is a strong baseline for ResNet-50, our
method outperforms by 0.60% in ∆ -Top-1 Acc. GNN-RL
and Random-Pruning are two recent pruning works. Our
method outperforms them by 2.23% and 1.16% separately,
while our method prunes more FLOPs. PHP, DCP, CCP,
and DMC have similar ∆-Top 1 accuracy. The gap between
our method and these methods ranges from 1.21% to 1.47%
regarding ∆-Top 1 accuracy. The advantage of our method
compared to the rest methods is more apparent.

ResNet-101. Our method achieves 78.14% Top-1 accuracy
and 94.00% Top-5 accuracy, which is 0.61% and 0.29% bet-
ter than the baseline Top-1 and Top-5 accuracy. Although
DMC prunes a little bit more FLOPs, it only achieves
77.41% Top-1 accuracy after pruning which is 0.73% lower
than our method. FPGM, Taylor, and PFP remove less than

50% FLOPs. Our method prunes at least 10% more FLOPs
and still has an advantage in terms of ∆-Top 1 accuracy
(from 0.66% to 1.55%).
MobileNet-V2. MobileNet-V2 is generally harder to
prune compared to ResNets. All comparison methods on
MobileNet-V2 remove around 30% FLOPs. Our method
achieves 72.05% Top-1 accuracy and 90.37% Top-5 accu-
racy, which is 0.14% and 0.07% better than the baseline
Top-1 and Top-5 accuracy. Given the similar pruning rate,
our method is 1.15%, 0.94%, 1.11% and 1.14% higher than
Random-Pruning, MetaPruning CC, and AMC separately
regarding ∆-Top-1 Acc. MetaPruning prunes most FLOPs,
but the performance is much lower than our method. In
short, our method can also be applied to lightweight CNNs,
like MobileNet-V2.

4.4. Analysis of Our Method

The effectiveness of partial regularization. To verify
whether our proposed partial regularization is effective, we
plot the average channel norm of different groups within
each block for ResNet-56 and MobileNet-V2 on CIFAR-10.
The results are shown in Fig. 2. The average channel norm
for the group with partial regularization and without partial
regularization are obtained by 1

N̂l

∑
i∈Sl

∥Wl[i,:,:,:]∥GL and
1

Cl−N̂l

∑
i ̸∈Sl

∥Wl[i,:,:,:]∥GL separately. Weights with par-
tial regularization are effectively aligned. On the contrary,
weights without partial regularization are lightly affected,
which justifies the strength of our proposed partial regular-

17408

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: (a, e): the impact of λ in RFLOPs. (b, f): the effect of the architecture of AGN. (c, g): the effect of Estart. (d, h):
the effect of different setups. Experiments are conducted on CIFAR-10 with ResNet-56 and p = 0.5 (a,b,c,d,e) and p = 0.35
(f,g,h).

ization.
The impact of λ. We study the impact of λ when train-
ing the AGN, and we plot the test accuracy and RFLOPs in
Fig. 4a and Fig. 4e. From the figures, we can see that if λ
is too large, it will have negative impacts on learned sub-
networks. Otherwise, our method is robust to λ,
The effect of AGN. In Fig. 4b and Fig. 4f, we plot the test
accuracy when learning the AGN given different pruning
rates. We construct a Simple baseline, which parameterizes
each channel by using one learnable parameter. We can see
that when the parameterization space shrinks, the perfor-
mance of learned sub-networks will be affected severely. In
addition, the learning is slower, and the best sub-network
performance is also much worse than using AGN.
The effect of Estart. In the method section, we argue that
inserting partial regularization in the middle training pro-
cess is beneficial. We plot the results of Estart = 0 and
Estart = 40 in Fig. 4c and Fig. 4g. In general, they can
find sub-networks with similar performance, but Estart = 0
is worse than Estart = 40 when the pruning rate is large
(p = 0.35). More importantly, the full model accuracy of
Estart = 0 is 92.96% (average across different runs), which
is around 0.50% worse than Estart = 40, which suggests
that using partial regularization at the beginning will limit
the capacity of the full model.
The effect of different setups. We construct two additional
baselines to see how partial regularization helps to produce
a better sub-network within the full model. The One-Shot
baseline directly trains the AGN on the pre-trained model.
The w/o Partial Regularization baseline set γ = 0, and
the rest settings are the same as our method. The related

results are shown in Fig. 4d and Fig. 4h. From these fig-
ures, we can see that partial regularization always produces
the best sub-network from the full model. In addition, ‘w/o
partial regularization’ is worse than the one-shot setting.
This is probably because it is hard to capture the changes of
model weights without partial regularization, which makes
the training of AGN much harder than the rest settings.
More comparisons on the ImageNet dataset. To fur-
ther show how our method improves the one-shot setting,
we present the sub-network performance before and after
fine-tuning for one-shot and partial regularization settings
in Fig. 3 and Tab. 3. From Fig. 3, we can see that partial reg-
ularization still produces better sub-networks on ImageNet,
and it is around 10% better in terms of Top-1 accuracy than
the one-shot setting for different models. The advantage of
partial regularization naturally extends to results after fine-
tuning, as shown in Tab. 3.

5. Conclusion

In this paper, we investigate how partial regularization
helps to produce a better sub-network for network pruning.
Specifically, our method uses AGN to guide partial regu-
larization across the training process. We further provide
an efficient way to update model weights through proximal
gradients. With these designs, partial regularization effec-
tively reduces the gap between the sub-network within the
full model and the pruned model. Our method then starts
from a better sub-network, thus resulting in a better final
pruned model. Extensive experimental results on CIFAR-
10 and ImageNet show the effectiveness of our method.

17409

References
[1] Yoshua Bengio, Nicholas Léonard, and Aaron Courville.

Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013. 3

[2] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski,
Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D
Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al.
End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016. 1

[3] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau,
and Yoshua Bengio. On the properties of neural machine
translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014. 3

[4] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. Binaryconnect: Training deep neural networks with
binary weights during propagations. In Advances in neural
information processing systems, pages 3123–3131, 2015. 3

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical im-
age database. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 248–255.
Ieee, 2009. 5

[6] Xin Dong, Junfeng Guo, Ang Li, Wei-Te Ting, Cong Liu,
and H.T. Kung. Neural mean discrepancy for efficient out-
of-distribution detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 19217–19227, June 2022. 1

[7] Jonathan Frankle and Michael Carbin. The lottery ticket hy-
pothesis: Finding sparse, trainable neural networks. In In-
ternational Conference on Learning Representations, 2019.
2

[8] Shangqian Gao, Feihu Huang, Weidong Cai, and Heng
Huang. Network pruning via performance maximization. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 9270–9280, 2021. 1,
7

[9] Shangqian Gao, Feihu Huang, Jian Pei, and Heng Huang.
Discrete model compression with resource constraint for
deep neural networks. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
1899–1908, 2020. 1, 2, 6, 7

[10] Shangqian Gao, Burak Uzkent, Yilin Shen, Heng Huang, and
Hongxia Jin. Learning to jointly share and prune weights
for grounding based vision and language models. In The
Eleventh International Conference on Learning Representa-
tions, 2023. 3

[11] Junfeng Guo, Yiming Li, Xun Chen, Hanqing Guo, Lichao
Sun, and Cong Liu. SCALE-UP: An efficient black-box
input-level backdoor detection via analyzing scaled predic-
tion consistency. In The Eleventh International Conference
on Learning Representations, 2023. 1

[12] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015. 1

[13] Song Han, Jeff Pool, John Tran, and William Dally. Learning
both weights and connections for efficient neural network. In
Advances in neural information processing systems, pages
1135–1143, 2015. 1, 2

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 2, 5

[15] Yang He, Yuhang Ding, Ping Liu, Linchao Zhu, Hanwang
Zhang, and Yi Yang. Learning filter pruning criteria for deep
convolutional neural networks acceleration. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 2009–2018, 2020. 6

[16] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi
Yang. Soft filter pruning for accelerating deep convolutional
neural networks. In International Joint Conference on Arti-
ficial Intelligence (IJCAI), pages 2234–2240, 2018. 1, 6

[17] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and
Song Han. Amc: Automl for model compression and ac-
celeration on mobile devices. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 784–
800, 2018. 1, 2, 7

[18] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang.
Filter pruning via geometric median for deep convolutional
neural networks acceleration. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4340–4349, 2019. 6, 7

[19] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 3

[20] Zehao Huang and Naiyan Wang. Data-driven sparse struc-
ture selection for deep neural networks. In Proceedings of
the European conference on computer vision (ECCV), pages
304–320, 2018. 2

[21] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In Proceedings of the 32Nd International Con-
ference on International Conference on Machine Learning -
Volume 37, ICML, pages 448–456. JMLR.org, 2015. 2

[22] Eric Jang, Shixiang Gu, and Ben Poole. Categorical
reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016. 3

[23] Minsoo Kang and Bohyung Han. Operation-aware soft chan-
nel pruning using differentiable masks. In International Con-
ference on Machine Learning, pages 5122–5131. PMLR,
2020. 1, 2, 6

[24] Jaedeok Kim, Chiyoun Park, Hyun-Joo Jung, and Yoonsuck
Choe. Plug-in, trainable gate for streamlining arbitrary neu-
ral networks. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 2020. 2

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5

[26] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical report, Cite-
seer, 2009. 5

17410

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012. 1

[28] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS
Torr. Snip: Single-shot network pruning based on connec-
tion sensitivity. ICLR, 2019. 2

[29] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. ICLR,
2017. 2

[30] Yawei Li, Kamil Adamczewski, Wen Li, Shuhang Gu, Radu
Timofte, and Luc Van Gool. Revisiting random channel
pruning for neural network compression. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 191–201, 2022. 7

[31] Yawei Li, Shuhang Gu, Christoph Mayer, Luc Van Gool,
and Radu Timofte. Group sparsity: The hinge between fil-
ter pruning and decomposition for network compression. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 8018–8027, 2020. 3

[32] Yawei Li, Shuhang Gu, Kai Zhang, Luc Van Gool, and Radu
Timofte. Dhp: Differentiable meta pruning via hypernet-
works. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceed-
ings, Part VIII 16, pages 608–624. Springer, 2020. 2

[33] Yuchao Li, Shaohui Lin, Jianzhuang Liu, Qixiang Ye,
Mengdi Wang, Fei Chao, Fan Yang, Jincheng Ma, Qi Tian,
and Rongrong Ji. Towards compact cnns via collaborative
compression. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6438–
6447, 2021. 7

[34] Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman,
and Daniela Rus. Provable filter pruning for efficient neural
networks. In International Conference on Learning Repre-
sentations, 2020. 7

[35] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang,
Baochang Zhang, Yonghong Tian, and Ling Shao. Hrank:
Filter pruning using high-rank feature map. The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2020. 6

[36] Mingbao Lin, Rongrong Ji, Yuxin Zhang, Baochang Zhang,
Yongjian Wu, and Yonghong Tian. Channel pruning via au-
tomatic structure search. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), pages
673 – 679, 2020. 7

[37] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning efficient
convolutional networks through network slimming. In ICCV,
2017. 2

[38] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin
Yang, Kwang-Ting Cheng, and Jian Sun. Metapruning: Meta
learning for automatic neural network channel pruning. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 3296–3305, 2019. 2, 7

[39] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and
Trevor Darrell. Rethinking the value of network pruning.
In International Conference on Learning Representations,
2019. 2

[40] Zhaosong Lu and Xiaorui Li. Sparse recovery via partial
regularization: Models, theory, and algorithms. Mathematics
of Operations Research, 43(4):1290–1316, 2018. 2, 4

[41] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov.
Variational dropout sparsifies deep neural networks. In Pro-
ceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 2498–2507. JMLR. org, 2017. 3

[42] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio,
and Jan Kautz. Importance estimation for neural network
pruning. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 11264–11272,
2019. 1, 7

[43] Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, and
Dmitry P Vetrov. Structured bayesian pruning via log-normal
multiplicative noise. In Advances in Neural Information Pro-
cessing Systems, pages 6775–6784, 2017. 3

[44] Hanyu Peng, Jiaxiang Wu, Shifeng Chen, and Junzhou
Huang. Collaborative channel pruning for deep networks.
In International Conference on Machine Learning, pages
5113–5122, 2019. 1, 2, 7

[45] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. Xnor-net: Imagenet classification using bi-
nary convolutional neural networks. In European Conference
on Computer Vision, pages 525–542. Springer, 2016. 3

[46] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016. 1

[47] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information pro-
cessing systems, pages 91–99, 2015. 1

[48] Alex Renda, Jonathan Frankle, and Michael Carbin. Com-
paring rewinding and fine-tuning in neural network pruning.
In International Conference on Learning Representations,
2020. 2

[49] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4510–4520, 2018. 2, 5, 7

[50] Karen Simonyan and Andrew Zisserman. Two-stream con-
volutional networks for action recognition in videos. In Ad-
vances in neural information processing systems, pages 568–
576, 2014. 1

[51] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 1

[52] Yang Sui, Miao Yin, Yi Xie, Huy Phan, Saman
Aliari Zonouz, and Bo Yuan. Chip: Channel independence-
based pruning for compact neural networks. Advances in
Neural Information Processing Systems, 34, 2021. 7

[53] Yehui Tang, Yunhe Wang, Yixing Xu, Dacheng Tao, Chun-
jing Xu, Chao Xu, and Chang Xu. Scop: Scientific control
for reliable neural network pruning. Advances in Neural In-
formation Processing Systems, 33, 2020. 6, 7

[54] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and
Hai Li. Learning structured sparsity in deep neural networks.

17411

In Advances in neural information processing systems, pages
2074–2082, 2016. 3

[55] Mao Ye, Chengyue Gong, Lizhen Nie, Denny Zhou, Adam
Klivans, and Qiang Liu. Good subnetworks provably exist:
Pruning via greedy forward selection. In International Con-
ference on Machine Learning, pages 10820–10830. PMLR,
2020. 2

[56] Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping
Wang. Gate decorator: Global filter pruning method for
accelerating deep convolutional neural networks. In Ad-
vances in Neural Information Processing Systems, pages
2130–2141, 2019. 1, 2

[57] Sixing Yu, Arya Mazaheri, and Ali Jannesari. Topology-
aware network pruning using multi-stage graph embedding
and reinforcement learning. In International Conference on
Machine Learning, pages 25656–25667. PMLR, 2022. 6, 7

[58] Dejiao Zhang, Haozhu Wang, Mario Figueiredo, and Laura
Balzano. Learning to share: Simultaneous parameter tying
and sparsification in deep learning. 2018. 3

[59] Yanfu Zhang, Shangqian Gao, and Heng Huang. Explo-
ration and estimation for model compression. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 487–496, 2021. 2

[60] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,
Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui Zhu.
Discrimination-aware channel pruning for deep neural net-
works. In Advances in Neural Information Processing Sys-
tems, pages 875–886, 2018. 6, 7

17412

