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Unsupervised Image Anomaly Detection and
Localization in Industry Based on Self-Updated

Memory and Center Clustering
Yongheng Liu , Xiangdong Gao , James Zhiqing Wen , and Huiyuan Luo

Abstract— Defect detection of industrial products often uses
computer vision methods. Detecting anomalies in the image can
reflect the defect of the product. To adapt to the scene of less
defect samples and unclear defect classification standards in
industrial production and improve the accuracy and robustness
of detection, this article proposes a new unsupervised anomaly
detection and localization framework based on self-updated
memory and center clustering (SMCC). Distinct from previous
works, it uses a pretrained model to extract image features, and
then uses a Gaussian mixture model to cluster and obtain cluster
centers, so that normal sample features are compactly distributed
around the cluster centers, thereby better distinguishing normal
and abnormal sample features. The advantage of the self-updated
memory bank is to reduce the use of memory and adjust the
parameters of the pretrained network to make it more suitable
for the distribution of the current dataset. Our experiments on the
MVTec AD and other datasets show the effectiveness of SMCC
for anomaly detection and localization.

Index Terms— Anomaly detection, anomaly localization,
Gaussian mixture model.

I. INTRODUCTION

DEFECT detection [1] is one of the important technolo-
gies to ensure product quality, which aims to find the

appearance defects of various industrial products. Although the
manufacturing process can be improved by signal processing
and filtering to remove noise [2], [3], [4], [5], [6], the products
still suffer from various defects. The quality of the product is
usually judged by visual imaging and further processing of
the image [7], [8], [9] when detecting product surface defects.
Recently, deep learning is gradually applied to industrial detec-
tion tasks [10], [11] because of the shortcomings of traditional
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visual detection, such as low accuracy and poor adaptability.
Detection algorithms based on deep learning require a large
number of defect samples for training. However, in actual
industrial production, the number of defect samples is few and
uneven, and it is often difficult to establish a clear classification
criterion. The previously unknown and missed defects can
make the classification task even more difficult.

Anomaly detection is to identify and separate data that
are significantly different from normal data. The anomaly of
industrial products refers to any defect that occurs outside the
normal product. This article focuses on the surface defects
of industrial products and does not discuss internal defects.
The purpose of anomaly detection is to determine whether the
sample is abnormal, and the purpose of anomaly location is
to find the location of the anomaly. Anomaly detection and
location of industrial products can be achieved by acquiring
its surface image and detecting the image with an algorithm.
Currently, the unsupervised anomaly detection algorithm is
widely studied in industry because its training is only for
normal samples without defect samples [12]. The purpose of
these algorithms is to accurately detect and locate anomaly
areas in the image using the prior knowledge of anomaly-
free images. This task is of particular importance in the
intelligent manufacturing process of qualified products, such
as automatic inspection and screening of defects or defective
products [13]. The unsupervised anomaly detection algorithm
not only resolves the problem of small samples in industrial
scenes but also does not need expensive sample labeling for
negative samples.

At present, the main challenges of unsupervised anomaly
detection are as follows.

1) There are few datasets available in this field.
2) When there is noise in normal samples, the accuracy

of the anomaly detection algorithm trained by normal
samples will be greatly reduced.

3) Anomaly detection for complex background and target
is difficult.

Previous work on anomaly detection is mostly based on
reconstruction and representation. The method based on recon-
struction aims to establish the comparison between the samples
before and after reconstruction [14], [15]. Its idea is to use
only normal data to train the reconstruction network, while
the input anomaly image cannot be reconstructed well, and
the difference can be transformed into the anomaly score for
a detection task. The reconstruction function is usually realized
by autoencoders and teacher–student networks [16]. However,
the disadvantage of such methods is that the reconstruction
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of normal images is often fuzzy, and normal samples may
be reconstructed as anomaly or the opposite situation may
occur when the reconstruction ability is strong. Recently, the
normalizing flow (NF) [17] has been increasingly used in the
field of image anomaly detection [18], [19]. The NF model
transforms arbitrary complex data distribution into some basic
simple distribution (such as single Gaussian distribution and
uniform distribution) by constructing a reversible transforma-
tion function. The disadvantage is that it is often accompanied
by a large amount of memory consumption and network
computation, and it requires more training time.

Based on this background, this article proposes a novel
framework based on self-updated memory and center clus-
tering (SMCC) for unsupervised anomaly detection and
location.

II. RELATED WORK

Although there are many literatures related to learning
normal representation or reconstruction, some new studies
have focused on pretrained models in recent years due to some
shortcomings mentioned above and the scarcity of industrial
anomaly detection datasets. These works use pretrained net-
work models on large external natural image datasets (such as
ImageNet [20]) as feature extractors so that the data at hand
do not require additional adaptation. On this basis, a series
of anomaly detection methods are generated, which rely on
better reuse of the features extracted by the pretrained model.

For example, some methods apply classification to the
extracted features. The deep one-class classification (OCC)
method first learns the data description of the normal sample,
and then uses a criterion (such as the distance to the class
center) to detect and locate anomalies in the test sample.
Although the principle is similar, unlike the traditional support
vector machine (SVM) method [21], the support vector domain
description (SVDD) [22] can be used as an unsupervised
method to solve OCC problems. Some methods are based
on SVDD and combined with deep neural networks, such as
DeepSVDD [23] and patchSVDD [24]. Some methods store
the features of the normal samples obtained by the pretrained
model in the memory library, and then judge whether the
test samples are normal according to the distance between
the features. The subimage anomaly detection with deep
pyramid correspondences (SPADE) [25] combines features
extracted from the pretrained network with the K -nearest
neighbor (KNN) to obtain anomaly scores. Based on SPADE,
Roth et al. [26] adjusted the feature extraction part of the
model to achieve better performance.

Such methods are simple and practical, but their common
problem is that the memory increases as the dataset increases
and the features extracted by the pretrained model without
any adjustment are affected by the ImageNet dataset [27].
In addition, noise or redundant information in the memory
bank may reduce the accuracy and robustness of the detection.
When the memory bank contains abnormal noise, even if
the test sample is in the normal feature distribution range,
it may still be misjudged due to the close distance from the
outliers. Therefore, we expect the normal features to be more
compact and separated from the anomaly features so that
the unorganized features follow a certain distribution. In the

existing work, the Gaussian distribution has been applied
in anomaly detection. The Gaussian clustering of pretrained
feature (GCPF) [28] estimated the multidimensional Gaussian
distribution by calculating the mean and variance of features.
In the work of the patch distribution modeling framework
(PaDiM) [29], the feature map is divided into many small
patches, and then the Gaussian distribution at each patch loca-
tion is estimated, which improves the accuracy of distribution
estimation but requires more time. Since existing work has
demonstrated the effectiveness of the Gaussian distribution
in anomaly detection, we use the Gaussian mixture model
(GMM) to cluster the extracted features. In our proposed
SMCC, the pretrained model is used to extract features. At the
patch level, GMM clustering and sampling are used to obtain
a central group representing each Gaussian distribution, and
then the central group is used to supervise and guide the
pretrained network and memory update. The purpose of using
a self-updated memory library is to reduce the memory usage
and adjust the parameters of the pretrained network to make
it more suitable for the distribution of the current dataset. The
purpose of combining the self-updated memory library with
the GMM center clustering method is to avoid the memory
size and noise problems and optimize the feature distribution.

Algorithm 1 Framework of the Proposed SMCC

# Feature Extraction
Input: Training images set X , Pretrained model 8

for x in X do
φ = 8(x)

for j in H do
concat Resi ze(φ j ) to φc

end for
end for
φc is divided into H ×W patches

Output: P
# GMM cluster
Input: P , number of clusters K , sampling rate r
for x in X do

Clustering with GMM and sampling
end for

Output: Center set S
# Self-Updated Memory Bank
Input: Pretrained model 8, patches P , Center set S, epochs
W
Initialize memory bank M
for i in W do

for x in X do
Calculate the distance between patches and center and

update the distribution of patches
end for

end for
return The updated M′ and pretrained model 8′

III. PROPOSED ANOMALY DETECTION METHOD

The proposed framework SMCC is presented in Fig. 1. The
SMCC has two stages and three modules. The two stages
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Fig. 1. Framework of the proposed SMCC.

are the training and testing stages. The three modules are
the feature extraction and processing, the GMM clustering
and center sampling, and the self-updated memory bank.
Algorithm 1 shows the training steps of SMCC.

A. Feature Extraction and Processing
The models used for feature extraction are all pretrained

on ImageNet. In this article, the feature extractor is denoted
as 8. The training dataset consists of photographs of industrial
product surfaces without anomalies, while the test dataset
contains images of normal and abnormal products. We use
{x1, . . . , xN ∈ X : l(x) = 0} to denote the set of all
the training images, where l(x) indicates that the image is
normal (l(x) = 0) or abnormal (l(x) = 1). Accordingly,
we define {y1, . . . , yN ∈ Y : l(y) ∈ {0, 1}} to be the set of
the test samples. The features in the product image include
its edges, contours, colors, attributes, and other semantic
information. The information of these features is extracted
from the image by the feature extractor 8. Many works
[26], [28] have shown that the feature information extracted
by each layer of the convolutional neural network (CNN)
model is different. Specifically, the top layers in the network
extract the underlying features, such as edge features; the
latter layers in the network extract high-level features, which
are the reorganization of low-level features and can highly
summarize the attributes of the entity itself. Therefore, SMCC
fuses the feature maps extracted from different layers to form
a more comprehensive feature information. Each layer of the
feature map output by the feature extractor is represented
by φi, j = 8(xi ), i, j ∈ N, where i denotes the number of
samples, and j represents the number of feature layers. With
ResNet18 as an example, the four feature maps output by its

Fig. 2. (a)–(d) Feature map of ResNet18 layers one, two, three, and four
output (by channel).

four layers are fused into a feature map φc through operations
such as convolution and concat. The four feature maps output
from the four layers of ResNet18 are shown in Fig. 2.

Then, SMCC divides the feature map into patches, so that
the subsequent processing of features is at the patch level
rather than the level of the entire feature map. Assuming that
the feature map φi has a resolution of H × W , if the size of
each patch is 1 × 1, the feature map is divided into H × W
patches Pm,n (m,n denotes the position) at most.
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B. GMM Clustering and Center Sampling
To solve the problem of noise described in Section II,

SMCC clusters the feature patches of normal samples. The
effectiveness of Gaussian clustering in anomaly detection has
been confirmed by many works. Considering that a single
Gaussian model is difficult to meet the complexity of different
project features, we use a Gaussian mixture model to better
fit the diverse feature distribution. GMM clusters the training
samples and makes it away from the abnormal samples, while
forming multiple clustering contours. We then construct a
center set S of cluster centers that are expected to approximate
the distribution of clusters and their central locations. Given a
set So of input patches P , a center set [30] is a weighted subset
so that we can have a good approximation of the solution on
the center set S and the original dataset So.

GMM can be regarded as a model composed of k single
Gaussian submodels, and the submodel is the hidden variable
of the mixture model. In theory, GMM can effectively fit the
probability distribution of any shape. Now we assume the
input data: x1, x2, . . . , xN ⊂ Rd , GMM assumes that xi is
independent of each other and distributes according to the
weighted average of k multivariate normal distributions, where
k needs to be given in advance. The probability distribution
of the Gaussian mixture model is

p(xi | θ) =

k∑
j=1

w jN
(
xi | µ j , 6 j

)
(1)

where θ = (µ1, 61, w1, . . . , µk, 6k, wk), which is the expec-
tation, covariance, and probability of occurrence in the mixed
model for each submodel. The mixture weights w j ∈ [0, 1]
and

∑k
j=1 w j = 1, and N (x;µi , 6i ) denote the multivariate

normal distribution of the i th component of the mixture
established by means and covariance parameters. It can be
seen from the above formula that the key to complete the
modeling of data probability density function is to estimate the
parameter vector θ . The most common approach is to estimate
θ via maximum likelihood estimation (MLE). For GMM, the
log-likelihood function is

L(θ; X) =

N∑
i=1

log p(xi | θ) (2)

where N denotes the total number of datasets X . The
maximization of the log-likelihood is accomplished via the
expectation–maximization (EM) algorithm.

Our goal is to approximate the dataset X = (x1, . . . , xN ) by
a weighted set S = {(γ1, x′1), . . . , (γm, x′m)} ⊆ R+ × Rd such
that L(X | θ) ≈ L(S | θ), where we define

L(θ; S, γ) =

Q∑
i=1

γi log p
(
x ′i | θ

)
(3)

where Q denotes the total number of datasets S, and γi denotes
the weight. The whole scheme of the center set sampling based
on GMM is shown in Algorithm 2.

C. Self-Updated Memory Bank
The update of the memory bank is achieved by updating the

pretrained model. In the previous work [12], the pretrained

Algorithm 2 Center Set Construction Algorithm

Input: Data set X , Number of clusters k
k-means++ was used to obtain the initial approximate

solution
return bicriteria approximation B,approximation factor α

Input:Dataset X , bicriteria approximation B, approximation
factor α, coreset size m.
for j = 1 to |B| do

X j ←− Set of points from X closest to point B j .
end for

for j = 1 to |B| do
s(x)← αd(x,B)2

+
2α
|X j |

∑
x ′∈X j

d(x ′,B)2

+
2
|X j |

∑
x ′∈X d(x ′,B)2

end for
for x in X do

q(x)← s(x)∑
x ′∈X s(x ′)

end for
Sample m weighted points from X , where each point x is

sampled with probability q(x) and assigned a weight 1
m·q(x)

Fitting GMM model on the center set
return Center set S

Fig. 3. Schematic of the center clustering process. (a) Process of patches
being attracted center clustering. (b) Special case.

model is not updated, which makes the feature extraction
affected by the pretrained dataset. In most of the work on
supervised models [31], the pretrained model is updated by
the label of the training set. In SMCC, clustering learning
is performed first and then the pretrained model is updated
through the clustering centers. The whole process does not
require additional labels and training, so it is called self-
update. In the self-updating process, the patches stored in
the memory library are guided by the center set obtained
by the previous clustering and enter into different clustering
groups. As shown in Fig. 3(a), the center point attracts
the surrounding patches, making them form multiple shapes
around the center point. In the contours of these shapes, the
normal sample cluster has multiple cores, and its shape is
adaptively adjusted by training. Because only normal samples
are trained, abnormal samples are naturally far away when
normal P gradually enters each contour. To determine the
escape route of a normal sample, we calculate its distance
from each central point and then send it to the nearest central
point.
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TABLE I
COMPLEXITY ESTIMATION OF DIFFERENT MODELS

This process is achieved by iterating to reduce the value of
the loss function Lc

Lc =

M∑
i=1

min{(D(Pi , Cn), n ∈ [1, N ]} (4)

where M = H × W is the number of P , and D(Pi , Cn)

represents the calculation of the distance between each patch
and different centers. However, it is not enough to use only
one loss function. Because there could be a P that has more
than one nearest center when P is located at the midpoint of
two center points [Fig. 3(b)]. For this reason, we add a loss
function Lo to supplement the lack of constraints. It calculates
the distance d1 of Pi to the first closest center C1 and the
distance d2 to the second closest center C2, and then subtracts
them so that Pi moves closer to C1 and further away from C2

Lo =

M∑
i=1

D(Pi , C1)−D(Pi , C2). (5)

Finally, the loss function of SMCC LSMCC consists of two
parts. The memory bank is updated by continuously decreasing
the loss function, and the pretrained parameters are also
updated after each iteration

LSMCC = Lc + Lo. (6)

SMCC saves the updated network parameters and memory
bank and retains the best set of them after each training
session. In each training of SMCC, the memory and feature
extractor are updated, and only a fixed number of patches are
saved, which makes the memory size of SMCC not affected
by the number of samples. Table I records the complexity esti-
mates of SMCC and previous related work, where H and W
are the height and width of the feature map, respectively, and
C is the number of channels of the feature map. N represents
the total number of samples in the dataset, and B represents
the sample size of one batchsize. Obviously, the complexity
of SMCC is lower than that of SPADE and PaDiM.

D. Testing and Anomaly Score
During testing, the pretrained model 8′ obtained after train-

ing is used to extract feature information from the test images.
Then these features are merged and divided into patches, as in
the training phase. Finally, the anomaly score is calculated and
used to determine whether the sample is abnormal. Anomaly
score is obtained by calculating the distances between patches
in the test image and patches in the memory bank. The formula
for calculating the distance is as follows:

D = 2

√√√√ P∑
i=1

M∑
m=1

(xi − pm)2 (7)

TABLE II
TRAINING PARAMETERS AND EXPERIMENTAL ENVIRONMENT

where M represents the number of patches in memory bank,
and P represents the number of patches in extracted features.
The anomaly score is the mean of the K nearest distances

Sc =
1
K

∑
min

k
D. (8)

With the anomaly score of each position, the anomaly loca-
tion of the image can be obtained. To match the original input
resolution, we adjust the result image by bilinear interpolation.
In addition, we use Gaussian smoothing to reduce noise and
enhance image quality.

IV. EXPERIMENTS

A. Implementation Details and Evaluation Metric

Our experiments were conducted on the MVTec AD [32]
dataset. The dataset contains 5354 images of industrial prod-
ucts in ten object categories (bottle, pill, capsule, hazelnut,
metal nut, pill, screw, toothbrush, transistor, and zipper) and
five texture categories (carpet, grid, leather, tile, and wood).
The anomaly area of the dataset provides a pixelwise label with
70 different types of anomaly defects. Only normal images are
provided by the dataset for training, while the test set contains
normal and abnormal images. The more details of MVTec AD
can be seen in [32]. Following the practice of previous studies,
we tested each category separately.

Table II shows the setting of hyperparameters for training
and the experimental environment. All the models used in
this article are pretrained on the ImageNet dataset. And this
article uses Wide_ResNet50 as the feature extractor, and the
image size is fixed to 224 × 224 pixels. Unless specified, these
parameters are used by default in the following experiments.
All the experimental results in this article are the average of
at least three repeated experiments.

To get an additional performance measure that is indepen-
dent of the determined threshold, we use image-level and
pixel-level area under the receiver operating characteristic
curves (AUROCs) as the criteria for model evaluation. In gen-
eral, image-level AUROC is used to evaluate the ability of
anomaly detection; pixel-level AUROC is used to evaluate
the ability of anomaly localization. However, the problem
of pixel-level AUROC as an evaluation metric for anomaly
location is: a correctly segmented large region can make up
for many incorrectly segmented small regions, which may
affect the accuracy of the results to some extent. Therefore,
to more accurately evaluate the anomaly location of the model,
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TABLE III
PERFORMANCE OF DIFFERENT PRETRAINED MODELS

per-region-overlap (PRO) [33] is used as a supplementary
evaluation metric. It weights ground-truth regions of different
sizes equally so it can be used as a supplement to pixel-
level AUROC. The model’s performance in anomaly detection
is measured by image-level AUROC, and its performance
in anomaly localization is measured by pixel-level AUROC
and PRO.

B. Influence of Pretrained Models
Pretrained model is an application of transfer learning.

The pretrained model and fine-tuning mechanism have good
scalability. When supporting new tasks, the data only need to
be fine-tuned. Our experiments tried various pretrained back-
bone models as feature extractors. First, ResNet18, ResNet50,
and ResNet101 [34] were studied, and then Wide_ResNet50
(WRN50) and Wide_ResNet101 (WRN101) [35] were studied.
The results of experiments are reported in Table III.

It can be observed from the table that the depth and width
of the backbone have some influence on the performance of
the model. From the data, the performance of ResNet50 is
significantly better than ResNet18, which means that deeper
models have better learning ability and fit more complex
feature inputs to have stronger expressiveness. But the depth
has little effect after it reaches 50 layers, which means that
50 layers of learning are enough for our model. By observing
WRN50 and WRN101, it can be seen that their performance is
significantly better than the corresponding ResNet. In addition,
it is worth noting that the increase in width is more obvious for
the pixel-level AUROC, and the depth has almost no effect on
the pixel-level AUROC. This is because an increase in width
means an increase in the number of channels, which allows
each layer of the network to extract more features. As shown
in Fig. 2, we visualize the feature information extracted from
the different layer of the pretrained model channel by channel.
Obviously, the information stored in different channels is dif-
ferent, some focus on edge information, some focus on texture
information, some focus on global information and so on. For
the anomaly detection task, global information is emphasized
in feature extraction, while more details and complex texture
information are needed in the anomaly location task.

To further study the impact of different layers of the pre-
trained network on performance, we tested the models using
different network layers. The results are recorded in Fig. 4.
Obviously, the effect of using a certain layer of the network
alone is not ideal. The model that combines the features of
one, two, three, and four layers has the best effect. Therefore,
our method combines the features of all the layers.

C. Influence of Batch Size and Sampling
The batch size and sampling represent the number of

patches and cluster centers in the memory bank. The memory

Fig. 4. Network feature depths on anomaly detection performance.

Fig. 5. Batchsize and different sampling rates on performance. (a) Results of
the model using different batchsize. (b) Results of the model using different
sampling rate.

Fig. 6. Impact of different k values on performance.

bank stores a batch of patches for each update, so batch size
determines the size of the memory bank. We explored the
effect of memory size on SMCC performance by changing
the batch size. The experimental results are shown in Fig. 5(a).
It can be seen that the larger the batch, the better the model
performance. However, when the batch is greater than 16,
the performance of the model does not change much, which
indicates that our model does not depend on the storage of
a large number of features. Then, we focus on the change
in cluster centers due to different sampling rates, which
determines how many centers are there in the update process.
We explored this problem by setting different sampling rates,
and the results are shown in Fig. 6(b). The results show that
when the sampling rate changes, the indicators obtained by
the model are almost unchanged. This shows that SMCC does
not need too many clustering centers to achieve performance
saturation, which is conducive to saving computing resources.

D. Influence of Parameter k
In GMM clustering, the number of clusters k plays an

important role. However, due to the complexity of the
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TABLE IV
DIFFERENCES IN MODEL PERFORMANCE WHEN THERE ARE

ONLY ONE, TWO, OR NO LOSS FUNCTIONS

evaluated items, it is difficult to theoretically analyze the role
of k. We observed its effect on SMCC performance by setting
different k values. As shown in Fig. 6, when the k value is
less than 4, the gain of the texture class is greater than that of
the object class. This can be explained as that the factors of
texture class are relatively simple, so only less clustering can
meet the needs. When k is greater than 10, the change in k has
little effect on performance, which indicates that the number of
clusters has met the demand to a certain extent. In general, the
gain is greater when it is less than 6, which means that a few
clusters cannot fully express complex prototypes. An increase
in the k value will result in a certain gain in the performance,
but it will also increase the memory. The k value we selected
in the experiment is 10, and the application needs to be
determined according to the actual situation.

E. Influence of Loss Function
To further verify the validity of the self-updated mem-

ory bank, we set up the following experiments to explore
the effects of the two loss functions of SMCC. Table IV
records the results of SMCC using one, two, or no loss
functions in anomaly detection. No loss function means that
the self-updated module does not take effect.

Obviously, Lc has the greatest influence on the results, while
Lo only plays an auxiliary role, and the results are consistent
with our theoretical analysis. When there is no loss function,
features are randomly distributed, which is similar to SPADE,
where features are simply stored without any arrangement,
so the performance is naturally worse. When the loss function
Lc is added, the distribution of features will converge to the
Gaussian center and follow its classes, so the performance of
the model becomes better. However, when a feature point falls
in the middle of two or more taxa, it will be confused about
which taxa it belongs to, and the appearance of Lo is just to
solve this problem. After all, this is a minority of cases, so the
performance gain of Lo is not particularly obvious. From the
overall results, the loss function has gain for both image-level
and pixel-level AUROCs, which means that the self-updated
memory bank module improves the accuracy of the model.

F. Anomaly Detection on MVTec AD
In this section of the experiment, some test result graphs

are preserved to more intuitively show the performance of
our model. The parameters used in the model are consistent
with those described in Table II, and the pretrained model
used is Wide_ResNet50. Fig. 7 shows some results of SMCC
detection on the MVTec AD dataset. It shows the original

Fig. 7. Visual results of anomaly detection and location for some products
(cable, transistor, tile, metal nut).

Fig. 8. Some failure cases (pill, screw, grid, zipper).

images, the ground-truth images, the heat map predicted by
our model, and the anomaly segmentation result diagram. The
white part in the ground-truth images reflects the defective
part of the product, and the complete black indicates that the
product is free of defects. Overall, SMCC can accurately detect
and locate abnormal parts in the image. However, there are
still a few failure cases, which mainly include two types: the
missing detection cases and the false detection cases. Fig. 8
shows some failure cases. SMCC missed a small anomaly in
the image of grid. The other three items in the picture were
mis-detected. In all the failure cases, most are false positives.
And it can be found that the possibility of missed detection in
texture items is relatively large. This can be explained by the
fact that SMCC treats some anomalies as texture changes. Mis-
detections are often caused by the SMCC mistaking details of
color changes (such as reflection points on metal objects) for
anomalies. Finally, it can be concluded that the weakness of
SMCC lies in its understanding of the details of texture and
color changes.
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TABLE V
PERFORMANCE COMPARISON OF IMAGE-LEVEL AUROC (%) ON EACH CLASS OF MVTec AD DATASET. BEST RESULTS ARE SHOWN IN BOLD

TABLE VI
PERFORMANCE COMPARISON OF PIXEL-LEVEL AUROC (%) AND PRO (%) ON EACH CLASS

OF MVTec AD DATASET. BEST RESULTS ARE SHOWN IN BOLD

G. Comparison With the State-of-the-Art Methods

Tables V and VI record the comparison experiments of our
method with some other recently proposed advanced methods
on the MVTec AD dataset. Table V records the image-level
AUROC score, which reflects the model’s performance of
the anomaly detection. Table VI records the scores for the
pixel-level AUROC and PRO, which reflects the model’s
performance of the anomaly localization. The methods used
here include: Patch-SVDD [24], SPADE [25], PaDiM [29],
the variant variational autoencoder model L2 AE-grad [14],
STPM [16], GCPF [28], CFlow [19], DFR [15], and ours.

The following observations are made from the data in the
tables.

1) SMCC has a better performance than SPADE whether
it is anomaly location or detection. SPADE directly
uses the features extracted by the pretrained model
to classify by the KNN method. Differently, SMCC
clusters the extracted features to avoid the classification

results being affected by noise and updates the pretrained
model through the self-renewal module, which makes
the parameters of the pretrained model more suitable
for the current task.

2) GCPF performs Gaussian clustering on the features
extracted from each layer of the pretrained model and
then integrates the results, while PaDiM divides the
feature map into many patches to learn Gaussian dis-
tribution, respectively. As a result, PaDiM’s processing
of features is more refined, which is one of the reasons
why PaDiM performs better than GCPF. In comparison,
SMCC not only makes full use of each layer of infor-
mation but also divides the feature map into patches
for clustering. More importantly, the pretrained model
is updated by the self-update module, which makes the
performance of SMCC surpass GCPF and PaDiM.

3) CFLow can learn complex feature representations
through the powerful fitting ability of NF, which makes
such methods have good performance. In contrast,
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Fig. 9. Heat map of significant difference.

TABLE VII
PERFORMANCE OF SEVERAL METHODS WHEN USING

THE SAME BACKBONE (WRN50)

SMCC can perform at the same level or even better with
less training.

4) As shown in Table V, the overall performance of SMCC
in the anomaly detection tasks is outstanding. From
Table VI, it can be found that SMCC is relatively weak
in anomaly localization of texture classes. We will con-
sider solving this problem in the future by improving the
clustering methods and enhancing the feature extraction
(such as obtaining more detailed information through a
wider model).

To evaluate the performance of the model more scien-
tifically, we conducted a statistical significance test on the
experimental data of different models. Because our samples
are random and independent, and based on the central limit
theorem, our data are suitable for paired t-test. Fig. 9 records
the results of our paired t-tests between different models,
where M1–M8 represent the eight models in Table V. In the
heat map, if the P value is less than 0.05, it indicates that
the significant difference between the two models is relatively
large, and the two models are very different. Obviously, SMCC
and other models have large difference values, which means
that SMCC does have outperforming performance.

For an anomaly detection model, its memory size and
inference time are also our focus. Table VII reports the
inference time and memory size of several different models.
The pretrained model used in the experiment is WRN50,
as shown in the table. Obviously, SMCC outperforms SPADE
and PaDiM when using the same backbone. While SMCC
is higher than the other two models in the three indicators
of anomaly detection, it occupies less memory and uses less
inference time.

TABLE VIII
MEAN ANOMALY LOCALIZATION PERFORMANCE ON BTAD AND DAGM

H. Anomaly Detection on Other Datasets
To further evaluate the general applicability of SMCC,

we conducted additional experiments on the beanTech
Anomaly Detection (BTAD) [36] and Deutsche Arbeitsge-
meinschaft für Mustererkennung e.V. and German chap-
ter of the International Association for Pattern Recognition
(DAGM) [37] datasets. The BTAD dataset contains a total of
2540 images of three categories of industrial products. The
DAGM dataset was published by the German Association
for Pattern Recognition. The dataset consists of ten different
texture categories. Various anomalies occur on various texture
backgrounds in the dataset. The training set of these datasets
contains only normal images, while the test set contains
normal and abnormal images. The more details of BTAD and
DAGM can be seen in [36] and [37]. Table VIII records
the average anomaly localization performance of different
methods on BTAD and DAGM. Here, we choose several
representative methods and SPADE which is closely related
to our method. VT-ADL is an anomaly detection method
proposed by the author of the BTAD dataset. It is obvious
that our SMCC performs better than other methods.

V. CONCLUSION

We propose a new unsupervised framework SMCC for
anomaly detection and location. In the test of the MVTec
AD dataset, the image-level AUROC reflecting the ability
of anomaly detection reached 98.5%, and the pixel-level
AUPROC and PRO reflecting the ability of anomaly location
reached 98.3% and 93.8%, respectively. On the BTAD and
DAGM datasets, the pixel-level AUROC of SMCC reaches
96.6% and 97.1%, respectively. Besides, our experiments show
that SMCC consumes less memory than other similar methods.
Through experimental analysis, we find that the weakness of
SMCC is the anomaly localization for texture changes and
subtle color changes. In the future, we will focus on the
anomaly localization of complex texture and color classes and
continue to optimize the speed and accuracy of our models.
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